Temporal endogenous gene expression profiles in response to lipid-mediated transfection.

J Gene Med

Department of Pharmaceutical Sciences, Durham Research Center II, University of Nebraska-Medical Center, Omaha, NE, USA.

Published: December 2015

AI Article Synopsis

  • Efficient nonviral gene delivery systems face challenges due to limited understanding of the molecules involved in DNA transfer.
  • In experiments with HEK 293T cells using lipoplexes and plasmid encoding GFP, researchers identified key genes with altered expression after treatment, highlighting the roles of specific genes in the transfection process.
  • The study suggests that manipulating the expression of genes like RAP1A, PACSIN3, and HSPA6 could enhance transgene production, providing potential targets for improving nonviral gene delivery methods.

Article Abstract

Background: Design of efficient nonviral gene delivery systems is limited as a result of the rudimentary understanding of the specific molecules and processes that facilitate DNA transfer.

Methods: Lipoplexes formed with Lipofectamine 2000 (LF2000) and plasmid-encoding green fluorescent protein (GFP) were delivered to the HEK 293T cell line. After treating cells with lipoplexes, HG-U133 Affymetrix microarrays were used to identify endogenous genes differentially expressed between treated and untreated cells (2 h exposure) or between flow-separated transfected cells (GFP+) and treated, untransfected cells (GFP-) at 8, 16 and 24 h after lipoplex treatment. Cell priming studies were conducted using pharmacologic agents to alter endogenous levels of the identified differentially expressed genes to determine effect on transfection levels.

Results: Relative to untreated cells 2 h after lipoplex treatment, only downregulated genes were identified ≥ 30-fold: ALMS1, ITGB1, FCGR3A, DOCK10 and ZDDHC13. Subsequently, relative to GFP- cells, the GFP+ cell population showed at least a five-fold upregulation of RAP1A and PACSIN3 (8 h) or HSPA6 and RAP1A (16 and 24 h). Pharmacologic studies altering endogenous levels for ALMS1, FCGR3A, and DOCK10 (involved in filopodia protrusions), ITGB1 (integrin signaling), ZDDHC13 (membrane trafficking) and PACSIN3 (proteolytic shedding of membrane receptors) were able to increase or decrease transgene production.

Conclusions: RAP1A, PACSIN3 and HSPA6 may help lipoplex-treated cells overcome a transcriptional shutdown due to treatment with lipoplexes and provide new targets for investigating molecular mechanisms of transfection or for enhancing transfection through cell priming or engineering of the nonviral gene delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.2821DOI Listing

Publication Analysis

Top Keywords

nonviral gene
8
gene delivery
8
differentially expressed
8
untreated cells
8
cells gfp+
8
lipoplex treatment
8
cell priming
8
endogenous levels
8
fcgr3a dock10
8
rap1a pacsin3
8

Similar Publications

Nanoparticle-Based gene therapy strategies in retinal delivery.

J Drug Target

January 2025

The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.

Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated.

View Article and Find Full Text PDF

Shielding siRNA by peptide-based nanofibers: An efficient approach for turning off EGFR gene in breast cancer.

Int J Biol Macromol

December 2024

Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy. Electronic address:

Peptide-based self-assembled nanosystems show great promise as non-viral gene and siRNA delivery vectors. In the current study, we designed and functionalized nanofibers for the delivery of siRNA, targeting and silencing EGFR gene overexpressed in triple-negative breast cancer. The nanofiber-mediated siRNA delivery was characterized in terms of zeta potential, morphology, and structural stability by circular dichroism spectroscopy.

View Article and Find Full Text PDF

The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis.

View Article and Find Full Text PDF

Suprachoroidal delivery of viral and non-viral vectors for treatment of retinal and choroidal vascular diseases.

Am J Ophthalmol

December 2024

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD; Johns Hopkins Translational ImmunoEngineering Center, Johns Hopkins University, Baltimore, MD; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD; Departments of Chemical & Biomolecular Engineering and Materials Science & Engineering, Johns Hopkins University, Baltimore, MD; Departments of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD. Electronic address:

Current treatments for retinal and choroidal neovascular diseases suffer from insufficient durability, including anti-vascular endothelial growth factor-A (VEGF-A) agents. It is, therefore, of interest to explore alternative methods that could allow for robust improvement in visual acuity with fewer injections required. Amongst various pre-clinical and clinical studies in the literature, a promising approach is the use of suprachoroidal injection with viral and non-viral gene delivery vectors.

View Article and Find Full Text PDF

CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) has revolutionized gene editing tools and paved the way for innovations in medical research for disease diagnosis and treatment. However, better specificity and efficient delivery of this gene machinery make it challenging to successfully edit genes for treating various diseases. This is mainly due to cellular barriers, instability in biological environments, and various off-target effects that prohibit safe and efficient delivery under in vivo conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!