Zeaxanthin and Echinenone Protect the Repair of Photosystem II from Inhibition by Singlet Oxygen in Synechocystis sp. PCC 6803.

Plant Cell Physiol

Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan

Published: May 2015

Carotenoids are important components of antioxidative systems in photosynthetic organisms. We investigated the roles of zeaxanthin and echinenone in the protection of PSII from photoinhibition in Synechocystis sp. PCC 6803, using mutants of the cyanobacterium that lack these carotenoids. The activity of PSII in mutant cells deficient in either zeaxanthin or echinenone was more sensitive to strong light than the activity in wild-type cells, and the activity in mutant cells deficient in both carotenoids was hypersensitive to strong light, indicating that the absence of these carotenoids increased the extent of photoinhibition. Nonetheless, the rate of photodamage to PSII, as measured in the presence of chloramphenicol, which blocks the repair of PSII, was unaffected by the absence of either carotenoid, suggesting that these carotenoids might act by protecting the repair of PSII. Knockout of the gene for the so-called orange carotenoid protein (OCP), in which the 3'-hydroxyechinenone cofactor, a derivative of echinenone, is responsible for the thermal dissipation of excitation energy, increased the extent of photoinhibition but did not affect photodamage, suggesting that thermal dissipation also protects the repair of PSII. In mutant cells lacking OCP, as well as those lacking zeaxanthin and echinenone, the production of singlet oxygen was stimulated and the synthesis de novo of various proteins, including the D1 protein, was markedly suppressed under strong light. These observations suggest that the carotenoids and thermal dissipation might protect the repair of photodamaged PSII by depressing the levels of singlet oxygen that inhibits protein synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcv018DOI Listing

Publication Analysis

Top Keywords

zeaxanthin echinenone
16
singlet oxygen
12
mutant cells
12
strong light
12
repair psii
12
thermal dissipation
12
protect repair
8
synechocystis pcc
8
pcc 6803
8
psii mutant
8

Similar Publications

Excitation energy transfer between the photochemically active protein complexes is key for photosynthetic processes. Phototrophic organisms like cyanobacteria experience subtle changes in irradiance under natural conditions. Such changes need adjustments to the excitation energy transfer between the photosystems for sustainable growth.

View Article and Find Full Text PDF

Cyanobacterial pigments have attracted considerable attention in industry due to their bioactive potential and natural origin. In the present study, the growth dynamics and pigment composition, in terms of chlorophyll , total carotenoids and phycobiliprotein content, of four cyanobacterial strains isolated from thermal springs, namely CZS 2201, CZS 2205, TSZ 2203, and sp. CZS 2204, were investigated.

View Article and Find Full Text PDF

Background: Carotenoids play key roles in photosynthesis and are widely used in foods as natural pigments, antioxidants, and health-promoting compounds. Enhancing carotenoid production in microalgae via biotechnology has become an important area of research.

Results: We knocked out the Na /Ca antiporter gene slr0681 in Synechocystis sp.

View Article and Find Full Text PDF

Cyanobacterial blooms are increasing in frequency and intensity globally, impacting lake ecosystem health and posing a risk to human and animal health due to the toxins they can produce. Cyanobacterial pigments preserved in lake sediments provide a useful means of understanding the changes that have led to cyanobacterial blooms in lakes. However, there is some uncertainty as to whether specific carotenoids are unique to certain genera or types of cyanobacteria.

View Article and Find Full Text PDF

In the antioxidant system in cyanobacteria, non-enzymatic antioxidants, such as carotenoids, are considered good candidates for coping with oxidative stress, particularly light stress, and pharmaceutical therapeutic applications. A significant amount of carotenoid accumulation has been recently improved by genetic engineering. In this study, to achieve higher carotenoid production with higher antioxidant activity, we successfully constructed five sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!