The formation of highly substituted carbon centers using catalysis has been a widely sought after goal, but complexes of highly substituted carbon atoms with transition metals are rare, and the factors that affect the relative stability of complexes with differentially substituted carbon atoms are poorly understood. In this study, a set of equilibrating alkyl-palladium complexes were subtly tuned to form either a primary or trisubstituted alkyl complex as the more thermodynamically favored state, depending on either the substrate or reaction conditions. An X-ray crystal structure of the trisubstituted alkyl-palladium complex is presented and compared with the corresponding primary alkyl complex. The mechanism for rearrangement and the factors that drive the change in stability are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201412033DOI Listing

Publication Analysis

Top Keywords

substituted carbon
12
primary alkyl
8
trisubstituted alkyl-palladium
8
alkyl-palladium complexes
8
highly substituted
8
carbon atoms
8
alkyl complex
8
chelation-driven rearrangement
4
rearrangement primary
4
alkyl aminopalladation
4

Similar Publications

A versatile and convenient procedure for the functional derivatization with carbon substituents at the 6-position of pyridoxal using a Grignard reaction upon a protected -isobutoxycarbony-loxypyridoxal chloride and Heck reactions with protected 6-vinylpyridoxal has been developed.

View Article and Find Full Text PDF

Sc-Catalyzed Asymmetric [2 + 2] Annulation of 2-Alkynylnaphthols with Dienes to Access Cyclobutene Frameworks.

Org Lett

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.

Herein, we introduce a scandium-catalyzed synthetic strategy that provides access to a diverse and functionalized array of cyclobutene frameworks adorned with a quaternary carbon center. This approach broadens the synthetic repertoire of 2-alkynylnaphthols with alkenes, offering a versatile platform for the construction of complex molecular architectures. The asymmetric catalytic [2 + 2] cycloaddition reaction demonstrates a wide substrate scope and an impressive functional group tolerance, yielding products with high efficiency, up to 97% yield, and excellent enantiomeric excess of up to 97%.

View Article and Find Full Text PDF

Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from sp³ to sp² and to sp states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures.

View Article and Find Full Text PDF

Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.

View Article and Find Full Text PDF

The ultraviolet-activated peroxymosnofulate (UV/PMS) system, an effective advanced oxidation process for removing dissolved organic matter (DOM) from wastewater, is limited by high chloride ion (Cl) concentrations in landfill leachate. This study used Fourier transform ion cyclotron resonance mass spectrometry to explore the transformation of DOM in the UV/PMS system with a high Cl concentration. The results revealed that elevated Cl levels generate reactive chlorine species, including chlorine radicals, dichlorine radicals, and hypochlorous acid/hypochlorite, reducing the total organic carbon (TOC) removal efficiency of Suwannee River natural organic matter (SRNOM) from 78.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!