Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deposition of amyloid β (Aβ) to form neuritic plaques in the brain is the pathological hallmark of Alzheimer's disease (AD). Aβ is generated from sequential cleavages of the β-amyloid precursor protein (APP) by the β- and γ-secretases, and β-site APP-cleaving enzyme 1 (BACE1) is the essential β-secretase for Aβ generation. Vulnerable regions in AD brains show increased BACE1 protein levels. However, the underlying mechanism how BACE1 is regulated remains to be further illustrated. Nuclear Factor of Activated T-cells (NFAT) has been implicated in AD pathogenesis. Despite the increasing appreciation for the importance of NFAT-dependent transcription in the nervous system, the regulation and function of specific NFAT isoforms in neurons is poorly understood. In this report we found that both BACE1 and NFAT3 levels were significantly increased in the brains of APP/PS1 transgenic mice. We found that overexpression of NFAT3 resulted in increase of BACE1 promoter activity and BACE1 transcription, while disruption of NFAT3 expression decreased BACE1 gene transcription and protein expression in SAS1 cells. In a addition, overexpression of NFAT3 leads to increase levels of Aβ production. Chromatin immunoprecipitation analysis revealed direct binding of NFAT3 to specific DNA sequences within BACE1 promoter region. Taken together, our results indicate that NFAT is a BACE1 transcription factor. Our study suggests that inhibition of NFAT-mediated BACE1 expression may be a valuable drug target for AD therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-015-1533-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!