AI Article Synopsis

  • The article discusses the interaction between quantum dots and α-chymotrypsin, highlighting how quantum dots reduce the enzyme's intrinsic fluorescence by forming complexes.
  • It provides quantitative measurements like quenching rate and binding constants, suggesting that the size of quantum dots affects their interaction with the enzyme.
  • Additionally, various spectroscopic techniques reveal changes in the enzyme's structure upon interaction, indicating potential for safe use of quantum dots in biological settings.

Article Abstract

In this article, we have examined the direct spectroscopic and microscopic evidence of efficient quantum dots-α-chymotrypsin (ChT) interaction. The intrinsic fluorescence of digestive enzyme is reduced in the presence of quantum dots through ground-state complex formation. Based on the fluorescence data, quenching rate constant, binding constant, and number of binding sites are calculated under optimized experimental conditions. Interestingly, fluorescence quenching method clearly illustrated the size dependent interaction of MPA-CdTe quantum dots. Conformational change of ChT was traced using synchronous fluorescence measurements, circular dichroism and FTIR spectroscopic methods. Furthermore, the AFM results revealed that the individual enzyme molecule dimensions were changed after interacting with quantum dot. Consequently, this result could be helpful for constructing safe and effective utilisation of QDs in biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.2847DOI Listing

Publication Analysis

Top Keywords

quantum dots
12
quantum
5
interaction digestive
4
digestive enzymes
4
enzymes tunable
4
tunable light
4
light emitting
4
emitting quantum
4
dots thorough
4
thorough spectroscopic
4

Similar Publications

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.

View Article and Find Full Text PDF

Microwave synthesis of molybdenum disulfide quantum dots and the application in bilirubin sensing.

Methods Appl Fluoresc

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.

Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.

View Article and Find Full Text PDF

Amplified electrochemiluminescence of Ru(dcbpy) via coreactant active sites on nitrogen-doped graphene quantum dots.

Talanta

January 2025

School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China. Electronic address:

Searching for new alternative to tripropylamine (TPrA) with low toxicity and high chemical stability for the tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium (II) (Ru(dcbpy)) based coreactant electrochemiluminescence (ECL) system is essential for widespread analytical applications. Here, nitrogen-doped graphene quantum dots (NGQDs) have been discovered to significantly amplify the ECL emission and increase the ECL efficiency of Ru(dcbpy) for the first time. However, the mechanism by which NGQDs act as coreactants is not well comprehended.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!