Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia worldwide. This review highlights the main clinical features, pathophysiological mechanisms, and therapeutic approaches for FRDA patients. The disease is characterized by a combination of neurological involvement (ataxia and neuropathy), cardiomyopathy, skeletal abnormalities, and glucose metabolism disturbances. FRDA is caused by expanded guanine-adenine-adenine (GAA) triplet repeats in the first intron of the frataxin gene (FXN), resulting in reduction of messenger RNA and protein levels of frataxin in different tissues. The molecular and metabolic disturbances, including iron accumulation, lead to pathological changes characterized by spinal cord and dorsal root ganglia atrophy, dentate nucleus atrophy without global cerebellar volume reduction, and hypertrophic cardiomyopathy. DNA analysis is the hallmark for the diagnosis of FRDA. There is no specific treatment to stop the disease progression in FRDA patients. However, a number of drugs are under investigation. Therapeutic approaches intend to improve mitochondrial functioning and to increase FXN expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10048-015-0439-z | DOI Listing |
Heart Rhythm
January 2025
Department of Molecular Biosciences, University of California, Davis, CA, USA; Department of Basic Sciences, California Northstate University, Elk Grove, CA. Electronic address:
Background: Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder, where most patients die from lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in FA patients are poorly understood.
Objective: This study aims to examine cardiac electrical signal propagation in mouse model of FA with severe cardiomyopathy and evaluate effects of omaveloxolone (OMAV), the first FDA-approved therapy.
Neurol Ther
December 2024
Patient-Reported Outcomes and Health Economics Research, Deutsches Zentrum für Neurodegenerative Erkrankungen/German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Ellernholzstrasse 1-2, 17489, Greifswald, Germany.
Introduction: Friedreich Ataxia (FA) is a multisystem neurodegenerative disease. Affected individuals rely on mobility assistive technologies (MAT) (e.g.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.
Background: Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.
Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!