Milestones in Friedreich ataxia: more than a century and still learning.

Neurogenetics

Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Rua Pedro de Toledo 650 Vila Clementino, São Paulo, 04039-002, SP, Brazil,

Published: July 2015

Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia worldwide. This review highlights the main clinical features, pathophysiological mechanisms, and therapeutic approaches for FRDA patients. The disease is characterized by a combination of neurological involvement (ataxia and neuropathy), cardiomyopathy, skeletal abnormalities, and glucose metabolism disturbances. FRDA is caused by expanded guanine-adenine-adenine (GAA) triplet repeats in the first intron of the frataxin gene (FXN), resulting in reduction of messenger RNA and protein levels of frataxin in different tissues. The molecular and metabolic disturbances, including iron accumulation, lead to pathological changes characterized by spinal cord and dorsal root ganglia atrophy, dentate nucleus atrophy without global cerebellar volume reduction, and hypertrophic cardiomyopathy. DNA analysis is the hallmark for the diagnosis of FRDA. There is no specific treatment to stop the disease progression in FRDA patients. However, a number of drugs are under investigation. Therapeutic approaches intend to improve mitochondrial functioning and to increase FXN expression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10048-015-0439-zDOI Listing

Publication Analysis

Top Keywords

friedreich ataxia
8
therapeutic approaches
8
frda patients
8
frda
5
milestones friedreich
4
ataxia
4
ataxia century
4
century learning
4
learning friedreich
4
ataxia frda
4

Similar Publications

Poincaré plot analysis of ECG uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich's ataxia.

Heart Rhythm

January 2025

Department of Molecular Biosciences, University of California, Davis, CA, USA; Department of Basic Sciences, California Northstate University, Elk Grove, CA. Electronic address:

Background: Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder, where most patients die from lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in FA patients are poorly understood.

Objective: This study aims to examine cardiac electrical signal propagation in mouse model of FA with severe cardiomyopathy and evaluate effects of omaveloxolone (OMAV), the first FDA-approved therapy.

View Article and Find Full Text PDF

Introduction: Friedreich Ataxia (FA) is a multisystem neurodegenerative disease. Affected individuals rely on mobility assistive technologies (MAT) (e.g.

View Article and Find Full Text PDF

Safety and efficacy of omaveloxolone v/s placebo for the treatment of Friedreich's ataxia in patients aged more than 16 years: a systematic review.

Orphanet J Rare Dis

December 2024

Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.

Background: Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions.

View Article and Find Full Text PDF

Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.

View Article and Find Full Text PDF

Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!