The circadian clock mechanism in organisms as diverse as cyanobacteria and humans involves both transcriptional and posttranslational regulation of key clock components. One of the roles for the posttranslational regulation is to time the degradation of the targeted clock proteins, so that their oscillation profiles are out of phase with respect to those of the mRNAs from which they are translated. In Drosophila, the circadian transcriptional regulator PERIOD (PER) is targeted for degradation by a kinase (DOUBLETIME or DBT) orthologous to mammalian kinases (CKIɛ and CKIδ) that also target mammalian PER. Since these kinases are not regulated by second messengers, the mechanism (if any) for their regulation is not known. We are investigating the possibility that regulation of DBT is conferred by other proteins that associate with DBT and PER. In this chapter, the methods we are employing to identify and analyze these factors are discussed. These methods include expression of wild type and mutant proteins with the GAL4/UAS binary expression approach, analysis of DBT in Drosophila S2 cells, in vitro kinase assays with DBT isolated from S2 cells, and proteomic analysis of DBT-containing complexes and of DBT phosphorylation with mass spectrometry. The work has led to the discovery of a previously unrecognized circadian rhythm component (Bride of DBT, a noncanonical FK506-binding protein) and the mapping of autophosphorylation sites within the DBT C-terminal domain with potential regulatory roles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2014.10.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!