The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond.

Cell Mol Life Sci

Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK, 99508, USA.

Published: June 2015

Post-translational arginine methylation is responsible for regulation of many biological processes. The protein arginine methyltransferase 5 (PRMT5, also known as Hsl7, Jbp1, Skb1, Capsuleen, or Dart5) is the major enzyme responsible for mono- and symmetric dimethylation of arginine. An expanding literature demonstrates its critical biological function in a wide range of cellular processes. Histone and other protein methylation by PRMT5 regulate genome organization, transcription, stem cells, primordial germ cells, differentiation, the cell cycle, and spliceosome assembly. Metazoan PRMT5 is found in complex with the WD-repeat protein MEP50 (also known as Wdr77, androgen receptor coactivator p44, or Valois). PRMT5 also directly associates with a range of other protein factors, including pICln, Menin, CoPR5 and RioK1 that may alter its subcellular localization and protein substrate selection. Protein substrate and PRMT5-MEP50 post-translation modifications induce crosstalk to regulate PRMT5 activity. Crystal structures of C. elegans PRMT5 and human and frog PRMT5-MEP50 complexes provide substantial insight into the mechanisms of substrate recognition and procession to dimethylation. Enzymological studies of PRMT5 have uncovered compelling insights essential for future development of specific PRMT5 inhibitors. In addition, newly accumulating evidence implicates PRMT5 and MEP50 expression levels and their methyltransferase activity in cancer tumorigenesis, and, significantly, as markers of poor clinical outcome, marking them as potential oncogenes. Here, we review the substantial new literature on PRMT5 and its partners to highlight the significance of understanding this essential enzyme in health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430368PMC
http://dx.doi.org/10.1007/s00018-015-1847-9DOI Listing

Publication Analysis

Top Keywords

prmt5
11
arginine methyltransferase
8
protein substrate
8
protein
6
prmt5 arginine
4
methyltransferase roles
4
roles development
4
development cancer
4
cancer post-translational
4
post-translational arginine
4

Similar Publications

DNA double strand breaks (DSBs) can be generated spontaneously during DNA replication and are repaired primarily by Homologous Recombination (HR). However, efficient repair requires chromatin remodeling to allow the recombination machinery access to the break. TIP60 is a complex conserved from yeast to humans that is required for histone acetylation and modulation of HR activity at DSBs.

View Article and Find Full Text PDF

Objective: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on PRT543, a new oral medication designed to inhibit PRMT5, an enzyme implicated in the growth of certain blood cancers.
  • It specifically investigates the effects of PRT543 in patients suffering from advanced myeloid malignancies that have mutations in splicing factors, which are crucial for proper gene expression and can contribute to cancer progression.
  • The early Phase Ib trial aims to assess the safety, tolerability, and initial effectiveness of PRT543 in these patients, providing groundwork for potential future treatments.
View Article and Find Full Text PDF

WD repeat domain 77 protein (WDR77), a WD-40 domain-containing protein, is a crucial regulator of cellular pathways in cancer progression. While much of the past research on WDR77 has focused on its interaction with PRMT5 in histone methylation, WDR77's regulatory functions extend beyond this pathway, influencing diverse mechanisms such as mRNA translation, chromatin assembly, cell cycle regulation, and apoptosis. WDR77 is a key regulator of cell cycle progression, regulating the transition from the G1 phase.

View Article and Find Full Text PDF

Discovery of PRMT5 N-Terminal TIM Barrel Ligands from Machine-Learning-Based Virtual Screening.

ACS Omega

January 2025

Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.

Protein arginine methyltransferase 5 (PRMT5), which symmetrically dimethylates cytosolic and nuclear proteins, has been demonstrated as an important cancer therapeutic target. In recent years, many advanced achievements in PRMT5 inhibitor development have been made. Most PRMT5 inhibitors in the clinical trial focus on targeting the C-terminal catalytic domain, whereas developing small molecules to interrupt the PRMT5/pICLn (methylosome subunit) protein-protein interface is also of great importance for inhibiting PRMT5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!