The ability of bovine embryos to develop to the blastocyst stage and to implant and generate healthy offspring depends greatly on the competence of the oocyte. Oocyte competence is attributed to its close communication with the follicular environment and to its capacity to synthesize and store substantial amounts of messenger RNA. Higher developmental competence of bovine oocytes has been associated with both the expression of a cohort of developmental genes and the concentration of sex steroids in the follicular fluid. The aim of this study was to identify differences in the expression of FST in cumulus cells and OCT-4 and MATER in oocytes and the influence of the follicular progesterone and follicular estrogen concentration on the competence of bovine oocytes retrieved 30 minutes or 4 hours after slaughter. Cumulus-oocyte complexes (COCs) were left in postmortem ovaries for 30 minutes (group I) or 4 hours (group II) at 30 °C. Aspirated oocytes were then subjected to IVM, IVF, and IVC or were evaluated for MATER and OCT-4 messenger RNA abundance by quantitative real-time polymerase chain reaction. Total RNA was isolated from pools of 100 oocytes for each experimental replicate. Progesterone and estradiol concentration in follicular fluid was evaluated by immunoassay using an IMMULITE 2000 analyzer. Three repeats of in vitro embryo production were performed with a total of 455 (group I) and 470 (group II) COCs. There were no significant differences between the cleavage rates (72 hours postinsemination [hpi]) between both groups (63.5% vs. 69.1%). However, blastocyst (168 hpi) and hatching (216 hpi) rates were higher (P < 0.05) in group II compared with those of group I (21.3% vs. 30.7% and 27.6% vs. 51.5%, respectively). Group II oocytes exhibited the highest MATER and OCT-4 abundance (P < 0.05). Follicular estradiol concentration was not different between both the groups, whereas the progesterone concentration was lower (P ≤ 0.05) in group II follicles. These results indicate that retrieving COCs 4 hours after slaughter could increase bovine in vitro developmental competence, which is linked to higher levels of oocyte MATER and OCT-4 transcripts and lower follicular progesterone concentration. Moreover, the results of the present study contribute to the identification of factors involved in the developmental competence of immature oocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2014.12.024 | DOI Listing |
Clin Transl Oncol
September 2024
Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
Biomed Mater Eng
January 2023
Department of Hepatobiliary Surgery, The First Hospital of Kunming (the Affiliated Calmette Hospital of Kunming Medical University), Kunming, China.
Background: Acute liver failure is one of the most intractable clinical problems. The use of bioartificial livers may solve donor shortage problems. Human umbilical cord mesenchymal stem cells (hUCMSCs) are an excellent seed cell choice for artificial livers because they change their characteristics to resemble hepatocyte-like cells (HLCs) following artificial liver transplantation.
View Article and Find Full Text PDFJ Hazard Mater
July 2021
Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. Electronic address:
The potential health hazards of particulates, such as micro/nano-sized plastics and carbon materials have recently received extensive attention. However, their toxicological properties in association with stem cell differentiation is still relatively unexplored. In this study, we elucidated the cytotoxic effects of 2D graphene oxide (GO), in relation to differentiation of human induced pluripotent stem cells (hiPSCs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2017
Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
In this study, we present a novel chitosan-intercalated montmorillonite/poly(vinyl alcohol) (OMMT/PVA) nanofibrous mesh as a microenvironment for guiding differentiation of human dental pulp stem cells (hDPSCs) toward neuronlike cells. The OMMT was prepared through ion exchange reaction between the montmorillonite (MMT) and chitosan. The PVA solutions containing various concentrations of OMMT were electrospun to form 3D OMMT-PVA nanofibrous meshes.
View Article and Find Full Text PDFWorld Neurosurg
November 2015
Department of Neurosurgery, UC Davis Medical Center, Sacramento, California, USA; UC Davis Stem Cell Program, Sacramento, California, USA. Electronic address:
Background: The dura mater can be easily biopsied during most cranial neurosurgical operations. We describe a protocol that allows for robust generation of induced pluripotent stem cells (iPSCs) and neural progenitors from acutely harvested dura mater.
Objective: To generate iPSCs and neural progenitor cells from dura mater obtained during ventriculoperitoneal shunt surgery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!