The validation of the AFM method for elastic modulus E measurement in soft materials (E <5 MPa) is still missing. The interest of measurements in materials with E <5 MPa is mainly biological, including soft tissues and single cells. For the diagnosis of malignant human tumors, a change in cell elasticity, within tissues, has recently been recognized as a marker of metastatic potential. To measure a cell elasticity difference, reproducible E measurements in biological samples are needed. In this work a robust method for a metrological validation of E measurements in the range 500-5000 kPa was developed, based on the realization of thick E standard samples and on the study of the interactions between the measurement process and the sample at micro- and nano-scale. E measurement reproducibility limit of 4% has been reached. This allows designing a very sensitive and reproducible measurement of E in biological samples representing thus a powerful diagnostic tool for cancer detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2015.01.023 | DOI Listing |
J Sci Food Agric
January 2025
Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA.
Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.
Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.
Sci Rep
January 2025
School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
The ore mining sites commonly experience slope instability, which is causing concern for the workers' safety and the operation's stability. Considering the Ziluoyi iron ore mining site as a case study, uniaxial compression strength and shear tests are performed on the lower disk peripheral rock, ore body, and upper disk peripheral rock, leading to the extraction of compressive strength and elastic modulus (lower disk: 77.7 MPa-9.
View Article and Find Full Text PDFJ Gynecol Obstet Hum Reprod
January 2025
Nanomedicine Imaging and Therapeutics Laboratory, INSERM EA 4662, University of Franche-Comte, Besançon, France; CHU de Besançon, Service de Gynécologie-Obstétrique, Besançon, France.
Objectives: This study aimed to describe the biometrics and elasticity of the perineal body and the anal sphincter in the ninth month of pregnancy and explore their association with the risk of perineal tears during childbirth.
Methods: In this prospective observational study, pregnant women at 36-40 weeks of gestation were included. Using transperineal 2D-mode ultrasound and shear wave elastography (SWE), we measured the biometrics and stiffness of the perineal body (PB), external anal sphincter (EAS), internal anal sphincter (IAS), and anal mucosa (AM) at rest and during Valsalva maneuvers.
J Fluid Mech
December 2024
Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Compiégne, France.
Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Materials Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran.
AISI 316L stainless steel is extensively used in various fields, including medicine. In this study, in order to improve antibacterial properties, reduce elastic modulus, increase hydrophilicity and delay corrosion on the surface of AISI 316L stainless steel pieces for biomedical applications, zinc and magnesium elements were used for coating. Zn monolayer, Zn-Mg bilayer, and Zn-Mg-Zn triple coatings were deposited on AISI 316L substrates using the thermal evaporation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!