The phasin PhaF controls bacterial shape and size in a network-forming strain of Pseudomonas putida.

J Biotechnol

Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain. Electronic address:

Published: April 2015

Pseudomonas putida N, a poly-3-hydroxyalkonate (PHA)-producing bacterium, showing ampicillin resistance, is an unusual strain. In the presence of this antibiotic, it grows as giant cells (25-50μm) forming complex networks inter-connected by micro-tubular structures. The transformation of this bacterium with a plasmid containing the gene phaF, which encodes a phasin involved in the molecular architecture of the PHA-granules, (i) restores the wild-type phenotype by reducing both bacterial size and length (coco-bacilli ranging between 0.5 and 3μm), and (ii) increases ampicillin resistance by more than 100-fold.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2015.01.022DOI Listing

Publication Analysis

Top Keywords

pseudomonas putida
8
ampicillin resistance
8
phasin phaf
4
phaf controls
4
controls bacterial
4
bacterial shape
4
shape size
4
size network-forming
4
network-forming strain
4
strain pseudomonas
4

Similar Publications

Biofilms formed by several bacterial strains still pose a significant challenge to healthcare due to their resistance to conventional treatment approaches, including antibiotics. This study explores the potential of loading natural extracts with antimicrobial activities into β-cyclodextrin (βCD) nanoparticles, which are FDA-approved and have superior biocompatibility owing to their cyclic sugar structures, for biofilm eradication. An inclusion complex of βCD carrying essential oils (BOS) was prepared and characterized with regard to its physicochemical properties, antimicrobial efficacy, and antibiofilm activities.

View Article and Find Full Text PDF

Pathway Elucidation and Key Enzymatic Processes in the Biodegradation of Difenoconazole by A-3.

J Agric Food Chem

January 2025

Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.

The extensive agricultural use of the fungicide difenoconazole (DIF) and its associated toxicity increasingly damage ecosystems and human health. Thus, an urgent need is to develop environmentally friendly technological approaches capable of effectively removing DIF residues. In this study, strain A-3 was isolated for the first time which can degrade DIF efficiently.

View Article and Find Full Text PDF

This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.

View Article and Find Full Text PDF

The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.

View Article and Find Full Text PDF

Background: As our understanding of gut microbiota's metabolic impacts on health grows, the interest in engineered probiotics has intensified. This study aimed to engineer the probiotic Escherichia coli Nissle 1917 (EcN) to produce indoleacetic acid (IAA) in response to gut inflammatory biomarkers thiosulfate and nitrate.

Results: Genetic circuits were developed to initiate IAA synthesis upon detecting inflammatory signals, optimizing a heterologous IAA biosynthetic pathway, and incorporating a RiboJ insulator to enhance IAA production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!