Sequential multisite phospho-regulation of KNL1-BUB3 interfaces at mitotic kinetochores.

Mol Cell

Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Medical Oncology, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands. Electronic address:

Published: March 2015

Regulated recruitment of the kinase-adaptor complex BUB1/BUB3 to kinetochores is crucial for correcting faulty chromosome-spindle attachments and for spindle assembly checkpoint (SAC) signaling. BUB1/BUB3 localizes to kinetochores by binding phosphorylated MELT motifs (MELpT) in the kinetochore scaffold KNL1. Human KNL1 has 19 repeats that contain a MELT-like sequence. The repeats are, however, larger than MELT, and repeat sequences can vary significantly. Using systematic screening, we show that only a limited number of repeats is "active." Repeat activity correlates with the presence of a vertebrate-specific SHT motif C-terminal to the MELT sequence. SHT motifs are phosphorylated by MPS1 in a manner that requires prior phosphorylation of MELT. Phospho-SHT (SHpT) synergizes with MELpT in BUB3/BUB1 binding in vitro and in cells, and human BUB3 mutated in a predicted SHpT-binding surface cannot localize to kinetochores. Our data show sequential multisite regulation of the KNL1-BUB1/BUB3 interaction and provide mechanistic insight into evolution of the KNL1-BUB3 interface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2014.12.036DOI Listing

Publication Analysis

Top Keywords

sequential multisite
8
multisite phospho-regulation
4
phospho-regulation knl1-bub3
4
knl1-bub3 interfaces
4
interfaces mitotic
4
kinetochores
4
mitotic kinetochores
4
kinetochores regulated
4
regulated recruitment
4
recruitment kinase-adaptor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!