Everyday more and more people are diagnosed with some form of cancer. Some are treatable with chemotherapy alone, while others need radiotherapy and occasionally surgery. Recently, concurrent administration of chemotherapy and radiotherapy has been increasingly used in cancer treatment, leading to improvements in survival as well as quality of life. Accordingly, interaction of chemotherapy drugs with radiation will be meaningful to examine. In the present study, gamma ray energy absorption and exposure of buildup factors were computed using the five-parameter geometric progression (G-P) fitting formula for some chemotherapy drugs in the energy range 0.015-15 MeV, and for penetration depths up to 40 mean free path (mfp). The generated energy absorption (EABF) and exposure buildup factors (EBF) of chemotherapy drugs have been studied as a function of penetration depth and incident photon energy. The significant variations in EABF and EBF for chemotherapy drugs have been observed at the moderate energy region. It has been concluded that the buildup of photons is less in azathioprine and is more in vinblastine compared with other drugs. Buildup factors investigated in the present work could be useful in radiation dosimetry and therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2014.10.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!