Functional and anatomical properties of human visual cortical fields.

Vision Res

Human Cognitive Neurophysiology Lab, VA Research Service, VA-NCHCS, 150 Muir Road, Martinez, CA 94553, USA; Department of Neurology and Center for Neuroscience, 4860 Y St., Suite 3700, Sacramento, CA 95817, USA.

Published: April 2015

Human visual cortical fields (VCFs) vary in size and anatomical location across individual subjects. Here, we used functional magnetic resonance imaging (fMRI) with retinotopic stimulation to identify VCFs on the cortical surface. We found that aligning and averaging VCF activations across the two hemispheres provided clear delineation of multiple retinotopic fields in visual cortex. The results show that VCFs have consistent locations and extents in different subjects that provide stable and accurate landmarks for functional and anatomical mapping. Interhemispheric comparisons revealed minor differences in polar angle and eccentricity tuning in comparable VCFs in the left and right hemisphere, and somewhat greater intersubject variability in the right than left hemisphere. We then used the functional boundaries to characterize the anatomical properties of VCFs, including fractional anisotropy (FA), magnetization transfer ratio (MTR) and the ratio of T1W and T2W images and found significant anatomical differences between VCFs and between hemispheres.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2015.01.015DOI Listing

Publication Analysis

Top Keywords

functional anatomical
8
anatomical properties
8
human visual
8
visual cortical
8
cortical fields
8
left hemisphere
8
vcfs
6
functional
4
properties human
4
fields human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!