In mammals, the trophoblast lineage of the embryo is specified before attachment/implantation to become the fetal portion of the placenta. Trophoblast-derived cells were isolated and cultured from day 10 and day 13 porcine embryos and were grown in vitro in a defined, serum-free culture medium for over 2 years without showing any signs of senescence. However, trophoblast-derived cells placed into serum-containing medium rapidly senesce and fail to proliferate. Semiquantitative and quantitative gene expression analyses of cells in culture from 0 to 30 days confirmed the presence (and relative abundance) of mRNA transcripts from genes involved in trophoblast function (CDX2, TEAD4, CYP17A1, HSD17B1, FGFR2, PLET, HAND1) as well as some genes known to mediate pluripotency (POU5F1, KLF4, CMYC). Protein immunolocalization demonstrated expression of both trophoblast and mesenchymal cell markers. DNA methylation patterns in promoters of three critical developmental genes (HAND1, KLF4, TEAD4) did not change appreciably over 4 months of culture in vitro. It was demonstrated that these trophoblast-derived cells are easily stably transfected with an exogenous transgene (eGFP) by a variety of methods, and show the ability to survive and to be passaged repeatedly after transfection. In summary, early embryonic porcine trophoblast-derived cells have demonstrated unique characteristics, which means they could be used as valuable tools for laboratory work. Anticipated applications include the study of trophoblast physiology as well as possible solutions for improving efficiency of transgenesis by somatic cell nuclear transfer and for pluripotency reprogramming of cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2015.01.012DOI Listing

Publication Analysis

Top Keywords

trophoblast-derived cells
16
porcine embryos
8
cells
7
trophoblast-derived
5
isolation characterization
4
characterization trophoblast-derived
4
trophoblast-derived stem-like
4
stem-like cells
4
cells peri-implantation
4
peri-implantation porcine
4

Similar Publications

Mechanisms controlling the process and patterning of blood vessel development in the placenta remain largely unknown. The close physical proximity of early blood vessels observed in the placenta and the cytotrophoblast, as well as the reported production of vasculogenic growth factors by the latter, suggests that signalling between these two niches may be important. Here, we have developed an in vitro model to address the hypothesis that the cytotrophoblast, by the secretion of soluble factors, drives differentiation of resident sub-trophoblastic mesenchymal stem cells (MSCs) along a vascular lineage, thereby establishing feto-placental circulation.

View Article and Find Full Text PDF

Prenatal Triphenyl Phosphate Exposure and Hyperlipidemia in Offspring: Role of Trophoblast-Derived Extracellular Vesicle PPARγ.

Environ Sci Technol

December 2024

School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China.

Triphenyl phosphate (TPhP) is a widely used organophosphate flame retardant, the health risks of TPhP are a global concern. In this study, we found that prenatal TPhP exposure at human relevant concentration induced hyperlipidemia in male offspring, it increased serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol. Placental trophoblast-derived extracellular vesicles (T-EVs) could transport to the fetus through maternal-fetal circulation.

View Article and Find Full Text PDF

Pregnancy Entails a Metabolic Rewiring of Maternal Circulating Neutrophils.

J Cell Physiol

January 2025

Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.

Immunometabolism is an emerging growing field that focuses on the role of cellular metabolism in the regulation of immune cell function and fate. Thus, proliferation, differentiation, activation, and function of immune cell populations are modulated by reprogramming their fueling and metabolic pathways. Pregnancy entails a fine immune and metabolic regulation of the maternal-fetal interaction to assist the energetic demands of the fetus where trophoblast cells have a central role.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is characterized by impaired fetal growth and dysregulated lipid metabolism. Extracellular vesicles (EVs) have been proved playing a crucial role in transporting biomolecules from the mother to the fetus. However, the mechanisms underlying cargo sorting and loading into trophoblastic EVs remain elusive.

View Article and Find Full Text PDF

In mice, the fetal brain is dependent upon the placenta for factors that guide its early development. This linkage between the two organs has given rise to the term, the placenta-brain axis. A similar interrelationship between the two organs may exist in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!