Fish egg yolk is largely derived from vitellogenins, which are synthesized in the liver, taken up from the maternal circulation by growing oocytes via receptor-mediated endocytosis and enzymatically processed into yolk proteins that are stored in the ooplasm. Lipid droplets are another major component of fish egg yolk, and these are mainly composed of neutral lipids that may originate from maternal plasma lipoproteins. This review aims to briefly summarize our current understanding of the molecular mechanisms underlying yolk formation in fishes. A hypothetical model of oocyte growth is proposed based on recent advances in our knowledge of fish yolk formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2015.01.025DOI Listing

Publication Analysis

Top Keywords

yolk formation
12
formation fishes
8
molecular mechanisms
8
mechanisms underlying
8
lipid droplets
8
yolk proteins
8
fish egg
8
egg yolk
8
yolk
6
ovarian yolk
4

Similar Publications

Identification of pennaceous barbule cell factor (PBCF), a novel gene with spatiotemporal expression in barbule cells during feather development.

Gene

January 2025

Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:

Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization.

View Article and Find Full Text PDF

Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.

View Article and Find Full Text PDF

Non-cell-autonomous regulation of mTORC2 by Hedgehog signaling maintains lipid homeostasis.

Cell Rep

January 2025

Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

Organisms allocate energetic resources between essential cellular processes to maintain homeostasis and, in turn, maximize fitness. The nutritional regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in Caenorhabditis elegans.

View Article and Find Full Text PDF

Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination.

Life Sci Alliance

March 2025

https://ror.org/05f950310 Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium

Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac.

View Article and Find Full Text PDF

Juvenile hormone (JH) regulates multiple physiological functions in insects including growth, metamorphosis, and reproduction. Juvenile hormone epoxide hydrolase (JHEH) and juvenile hormone esterase (JHE) are degradative enzymes that metabolise JH, and JH receptor (methoprene-tolerant, ) functions in the regulation of female reproduction and vitellogenesis. In this study, JH titres in adult females were determined using ultra high-performance liquid chromatography and tandem mass spectrometry; the JH titres ranged from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!