Carotenoids: potential allies of cardiovascular health?

Food Nutr Res

Human and Clinical Nutrition Unit, Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio, Chieti, Italy.

Published: February 2015

Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential antioxidant biological properties because of their chemical structure and interaction with biological membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive means of both primary and secondary cardiovascular disease (CVD) prevention. In fact, the oxidation of low-density lipoproteins (LDL) in the vessels plays a key role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive protein), and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some carotenoids to prevent CVD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321000PMC
http://dx.doi.org/10.3402/fnr.v59.26762DOI Listing

Publication Analysis

Top Keywords

carotenoids
6
carotenoids potential
4
potential allies
4
cardiovascular
4
allies cardiovascular
4
cardiovascular health?
4
health? carotenoids
4
carotenoids class
4
class natural
4
natural fat-soluble
4

Similar Publications

Diabetic Neuropathy (DN) is a widespread and severely debilitating consequence of diabetes mellitus that impairs function, causes discomfort, and damages peripheral nerves. Numerous molecular pathways are involved in the pathogenesis of DN, including cyclooxygenase, polyol, protein kinase C, and inflammatory pathways. These molecular pathways may be responsible for the mechanism behind the onset and development of DN.

View Article and Find Full Text PDF

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.

View Article and Find Full Text PDF

Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.

View Article and Find Full Text PDF

Unraveling key ABA pathways, including OsWRKY71-OsABA8ox1 and OsbZIP73-OsNCED5, provides valuable insights for improving cold tolerance in rice breeding for cold-prone regions. Cold stress limits rice (Oryza sativa L.) production in cooler climates.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!