Aiming at clarifying the interactions between Cs, Sr, and other mineral elements in the genus Amaranthus, this study adopted 33 different varieties of Amaranthus and investigated the concentrations of 23 mineral elements in shoots grown in the fields of Iino in Fukushima prefecture. Significant varietal effects were detected for all elements except Se, and degree of interspecies variation was highly element dependent. Among 23 elements, amaranths were less sensitive to the accumulation of Cs and Sr than most other mineral elements to the species level. There are six elements showing significant correlation with Cs, positive correlations between As, Rb, Al, Fe, Ni, and Cs, and negative correlation between Ba and Cs. Significant correlations between Ca, Mg, Mn, Zn, B, Ba, Cd, and Sr were detected, and all of the coefficients were positive. Cs and Sr did not present significant correlation, but they were both significantly correlated with Ba. By principal component analysis (PCA), the first and second principal components (PC1 and PC2) accounted for 23.2 and 20.3% of the total variance and associated with Cs and Sr, respectively. Both of the two species took up more Cs by promoting the influx of elements positively correlated with Cs into shoot, but at the same time, Amaranthus hypochondriacus (L.) Mapes 847 decreased the K and Ba uptake and Amaranthus powellii (S. Wats) subsp. Powellii inhibited the accumulation of Rb, Sr, and significantly correlated elements of Sr in shoot. This study is the first to pave the way for comprehension on ionome in amaranth shoot at the variety level. The results of this research provide the ionomic basis for implementing countermeasures in the field against the translocation of Cs (and potentially Sr) toward crops and food.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf5058777 | DOI Listing |
J Nanobiotechnology
January 2025
Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.
Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Shandong Bureau of China Metallurgical Geology Bureau, Qingdao, 266109, China.
The natural environment and public health are gravely threatened by the enrichment of soil potentially toxic elements (PTEs). To explore the contamination level, sources and human health risks posed by PTEs, high-density soil sampling was carried out in the upper Wei River region (UWRR). The results demonstrated that the pollution risk and ecological risk in UWRR as a whole were at a low level, but there were moderate or higher ecological risks of Hg and Cd in some areas.
View Article and Find Full Text PDFMetallomics
January 2025
Mayo Clinic, 200 1st St SW, Rochester, Minnesota 55902, United States, 507-538-7241.
Metals and metalloids including cobalt, gadolinium, lutetium and germanium are used in numerous medical applications spanning diverse specialities including orthopedics, radiology, oncology and healthcare artificial intelligence. These medical advances include cobalt containing orthopedic implants, gadolinium-based contrast agents, lutetium-containing cancer drugs and germanium-based semiconductors. While these metal and metalloid-based solutions do improve patient care, there is a heavy side to how the elements needed for these solutions are mined, extracted and discarded.
View Article and Find Full Text PDFJ Oral Sci
January 2025
Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University.
Purpose: This study investigated the synergistic effects of reduced graphene oxide (RGO) on the antibacterial activity of three calcium hydroxide-based intracanal medicaments with different vehicles.
Methods: Multispecies biofilms were cultured in a bovine root canal model. Intracanal medicaments containing nonaqueous vehicles, including N-methyl-2-pyrrolidone (NMP; CleaniCal), propylene glycol (PG; UltraCal XS), and polyethylene glycol (PEG; Calcipex II), were placed in the model.
Food Chem
January 2025
Group of Alternative Analytical Approaches (GAAA), Bioenergy Research Institute (IPBEN), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-060 São Paulo State, Brazil; National Institute of Alternative Technologies for Detection Toxicological Assessment and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, 14800-060 São Paulo State, Brazil. Electronic address:
Non-conventional food plants (or non-conventional edible plants) have the potential to serve as an excellent nutritional alternative while promoting the circular economy. Given the nutritional potential of non-conventional food plants, this study aimed to investigate and determine the composition of these plants using inductively coupled plasma optical emission spectroscopy (ICP OES) combined with chemometric techniques. In this context, the following non-conventional food plant species were evaluated: serralha (Sonchus oleraceus), two species of ora-pro-nóbis, Pereskia grandifolia and Pereskia aculeata, peixinho (Nematanthus gregarius), alfavaca (Ocimum basilicum), taioba (Xanthosoma sagittifolium), capeba (Pothomorphe umbellata), tranchagem (Plantago major), and bardana (Arctium lappa).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!