Interactions and hybrid complex formation of anionic algal polysaccharides with a cationic glycine betaine-derived surfactant.

Carbohydr Polym

Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; Université Européenne de Bretagne (UEB), France. Electronic address:

Published: May 2015

The interaction between anionic algal polysaccharides ((κ)-, (ι)-, (λ)-carrageenans, alginate and ulvan) and a cationic glycine betaine (GB) amide surfactant possessing a C18:1 alkyl chain has been studied using isothermal titration calorimetry (ITC), zeta-potential measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and surface tension measurements. It was observed that this cationic surfactant derived from renewable raw materials induced cooperative binding with the anionic polymers at critical aggregation concentration (CAC) and the CAC values are significantly lower than the corresponding critical micelle concentration (CMC) for the surfactant. The CMC of cationic GB surfactant was obtained at higher surfactant concentration in polysaccharide solution than in pure water. More interestingly, the presence of original polysaccharide/surfactant hybrid complexes formed above the CMC value was evidenced from (κ)-carrageenan by microscopy (TEM and AFM). Preliminary investigations of the structure of these complexes revealed the existence of surfactant nanoparticles surrounded with polysaccharide matrix, probably resulting from electrostatic attraction. In addition, ITC measurements clearly showed that the interactions of the κ-carrageenan was stronger than for other polysaccharides ((ι)-, (λ)-carrageenans, alginate and ulvan). These results may have important impact on the use of the GB amide surfactant in formulations based on algal polysaccharides for several applications such as in food, cosmetics, and detergency fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2015.01.001DOI Listing

Publication Analysis

Top Keywords

algal polysaccharides
12
anionic algal
8
cationic glycine
8
surfactant
8
ι- λ-carrageenans
8
λ-carrageenans alginate
8
alginate ulvan
8
amide surfactant
8
microscopy tem
8
cationic surfactant
8

Similar Publications

Applications of low-temperature plasma technology in microalgae cultivation and mutant breeding: A comprehensive review.

Bioresour Technol

December 2024

CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China. Electronic address:

Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, pharmaceuticals, medicine, cosmetics, and the food industries. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, protein, and polysaccharides through mutagenesis and/or stimulation ways, and suggests that LTP may be combined with multi-omics tools such as proteomics, transcriptome, metabolomics and advanced methods such as single-cell analysis techniques to provide a promising strategy for acquiring desirable strains in algal mutant breeding and for enhancing the production of bioactive compounds in the microalgae.

View Article and Find Full Text PDF

The genus () is most often associated with human clinical samples and livestock. However, are also prevalent in the hindgut of the marine herbivorous fish (Silver Drummer), and analysis of their carbohydrate-active enzyme (CAZyme) encoding gene repertoires suggests degrade macroalgal biomass to support fish nutrition. To further explore host-associated traits unique to -derived , we compared 445 high-quality genomes of available in public databases (e.

View Article and Find Full Text PDF

Seasonal hydrological variation impacts nitrogen speciation and enhances bioavailability in plateau lake sediments.

Water Res

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China. Electronic address:

Global warming has intensified the distinction between dry and wet seasons in monsoonal climates. The synergistic effect of high temperatures and rainfall during the wet season promotes the release of endogenous nitrogen (N) and eutrophication within lake ecosystems. However, the seasonal variations in sediments N speciation and bioavailability, and their intrinsic connection to release potential, remain unclear.

View Article and Find Full Text PDF

Recently, many studies have revealed the association between environmental stresses and skin disorders. Skin protects the inner body organs as a first line of defence against various environmental detriments. The physical, chemical, biological, and environmental stresses and internal factors, including reactive oxygen species, can lead to skin aging, laxity, wrinkles, dryness, and coarse texture.

View Article and Find Full Text PDF

Green synthesis of self-assembly, self-healing, and injectable polyelectrolyte complex hydrogels using chitosan, sulphated polysaccharides, hydrolyzed collagen and nanocellulose.

Int J Biol Macromol

December 2024

Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3J 1B6, Canada. Electronic address:

This study introduces a green method for preparing self-assembly hydrogels via polyelectrolyte complex (PEC) coacervation using chitosan, sulphated polysaccharides (chondroitin sulphate or fucoidan), and hydrolyzed collagen, followed by treatments, such as centrifugation, nanocellulose incorporation, algal fucoidan substitution, freezing-thawing, saline solution addition, and dialysis. Chitosan alters the non-gelling characteristics of chondroitin sulphate, fucoidan, and hydrolyzed collagen, initiating quick gelling. This study compared the effects of biopolymer concentrations, pHs, and treatments on hydrogel properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!