L-proline increases survival of tilapias infected by Streptococcus agalactiae in higher water temperature.

Fish Shellfish Immunol

Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China. Electronic address:

Published: May 2015

Streptococcosis causes massive tilapia kills, which results in heavy economic losses of tilapia farming industry. Out of the Streptococcosis, Streptococcus agalactiae is the major pathogen. The bacterium causes higher mortality of tilapias in higher than lower temperatures. However, effect of temperature on metabolic regulation which is related to the mortality is largely unknown. The present study showed 50% and 70% mortality of tilapias cultured in 25 °C and 30 °C, respectively, in comparison with no death in 20 °C following infection caused by S. agalactiae. Then, GC/MS based metabolomics was used to investigate a global metabolic response of tilapia liver to the two higher water temperatures compared to 20 °C. Thirty-six and forty-five varied abundance of metabolites were identified in livers of tilapias cultured at 25 °C and 30 °C, respectively. More decreasing abundance of amino acids and increasing abundance of carbohydrates were detected in 30 °C than 25 °C groups. On the other hand, out of the pathways enriched, the first five biggest impact pathways belong to amino acid metabolism. Decreasing abundance of l-proline was identified as a crucial biomarker for indexing higher water temperature and a potential modulator to reduce the high death. This was validated by engineering injection or oral addition of l-proline. Exogenous l-proline led to elevated amino acid metabolism, which contributes to the elevated survivals. Our findings provide a potential metabolic modulator for controlling the disease, and shed some light on host metabolic prevention to infectious diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2015.01.025DOI Listing

Publication Analysis

Top Keywords

higher water
12
°c °c
12
streptococcus agalactiae
8
water temperature
8
mortality tilapias
8
tilapias cultured
8
°c
8
cultured °c
8
decreasing abundance
8
amino acid
8

Similar Publications

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.

View Article and Find Full Text PDF

Antifungal activity of different extractions of drone larvae (apilarnil).

Nat Prod Res

January 2025

Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.

Drone larvae (DL) has many biological activities thanks to the bioactive components it contains, but there are very few studies on its antimicrobial activity. The aim of this research was to determine the antifungal activity of DL (raw and lyophilised) water and ethanol extracts against fluconazole (FLU) sensitive and resistant yeast strains. The 87 fungal strains obtained from clinical samples were identified by phenotypic and molecular methods, and broth microdilution test was used for antifungal activity.

View Article and Find Full Text PDF

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Co-assemblies of Silver Nanoclusters and Fullerenols With Enhanced Third-Order Nonlinear Optical Response.

Small Methods

January 2025

National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!