Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The relationship between the Moran model and stochastic Lotka-Volterra competition (SLVC) model is explored via time scale separation arguments. For neutral systems the two are found to be equivalent at long times. For systems with selective pressure, their behavior differs. It is argued that the SLVC is preferable to the Moran model since in the SLVC population size is regulated by competition, rather than arbitrarily fixed as in the Moran model. As a consequence, ambiguities found in the Moran model associated with the introduction of more complex processes, such as selection, are avoided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.114.038101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!