High-precision dc magnetization measurements have been made on Cu(C4H4N2) (NO3)2 in magnetic fields up to 14.7 T, slightly above the saturation field Hs=13.97  T, in the temperature range from 0.08 to 15 K. The magnetization curve and differential susceptibility at the lowest temperature show excellent agreement with exact theoretical results for the spin-1/2 Heisenberg antiferromagnet in one dimension. A broad peak is observed in magnetization measured as a function of temperature, signaling a crossover to a low-temperature Tomonaga-Luttinger-liquid regime. With an increasing field, the peak moves gradually to lower temperatures, compressing the regime, and, at Hs, the magnetization exhibits a strong upturn. This quantum critical behavior of the magnetization and that of the specific heat withstand quantitative tests against theory, demonstrating that the material is a practically perfect one-dimensional spin-1/2 Heisenberg antiferromagnet.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.114.037202DOI Listing

Publication Analysis

Top Keywords

spin-1/2 heisenberg
12
heisenberg antiferromagnet
8
magnetization
6
field-induced quantum
4
quantum criticality
4
criticality universal
4
temperature
4
universal temperature
4
temperature dependence
4
dependence magnetization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!