Hemorrhage and trauma induced coagulopathy remain major drivers of early preventable mortality in military and civilian trauma. Interest in the use of prehospital plasma in hemorrhaging patients as a primary resuscitation agent has grown recently. Trauma center-based damage control resuscitation using early and aggressive plasma transfusion has consistently demonstrated improved outcomes in hemorrhaging patients. Additionally, plasma has been shown to have several favorable immunomodulatory effects. Preliminary evidence with prehospital plasma transfusion has demonstrated feasibility and improved short-term outcomes. Applying state-of-the-art resuscitation strategies to the civilian prehospital arena is compelling. We describe here the rationale, design, and challenges of the Prehospital Air Medical Plasma (PAMPer) trial. The primary objective is to determine the effect of prehospital plasma transfusion during air medical transport on 30-day mortality in patients at risk for traumatic hemorrhage. This study is a multicenter cluster randomized clinical trial. The trial will enroll trauma patients with profound hypotension (SBP ≤ 70 mmHg) or hypotension (SBP 71-90 mmHg) and tachycardia (HR ≥ 108 bpm) from six level I trauma center air medical transport programs. The trial will also explore the effects of prehospital plasma transfusion on the coagulation and inflammatory response following injury. The trial will be conducted under exception for informed consent for emergency research with an investigational new drug approval from the U.S. Food and Drug Administration utilizing a multipronged community consultation process. It is one of three ongoing Department of Defense-funded trials aimed at expanding our understanding of the optimal therapeutic approaches to coagulopathy in the hemorrhaging trauma patient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618798PMC
http://dx.doi.org/10.3109/10903127.2014.995851DOI Listing

Publication Analysis

Top Keywords

air medical
16
prehospital plasma
16
plasma transfusion
16
trial will
12
prehospital air
8
plasma
8
medical plasma
8
plasma pamper
8
pamper trial
8
hemorrhaging patients
8

Similar Publications

N-acyl/sulfonyl-α-phosphonated 1,2,3,4-tetrahydroiso-quinolines (THIQs) are highly important structural motifs in organic synthesis and drug discovery. However, the one-pot approach enabling direct difunctionalization of THIQs remains challenging. Herein we report a photomediated one-pot multicomponent cascade reaction to access N-acyl/sulfonyl-α-phosphonated THIQs via twice acyl/sulfonyl iminium.

View Article and Find Full Text PDF

Background: Hyperbaric oxygen therapy (HBOT) is well established as a treatment for various medical conditions. However, it poses a risk of oxygen toxicity, which can cause seizures particularly in individuals with pre-existing seizure disorders. Consequently, seizure disorders are considered a relative contraindication to HBOT.

View Article and Find Full Text PDF

Repeated measurements of household air pollution may provide better estimates of average exposure but can add to costs and participant burden. In a randomized trial of gas versus biomass cookstoves in four countries, we took supplemental personal 24-h measurements on a 10% subsample for mothers and infants, interspersed between protocol samples. Mothers had up to five postrandomization protocol measurements over 16 months, while infants had three measurements over one year.

View Article and Find Full Text PDF

Background: Advancements in cardiac catheterization have improved survival for pediatric congenital heart disease patients, but the associated ionizing radiation risks necessitate ethical consideration.

Methods: This study presents an empirical model, developed from 3131 unique pediatric procedures, to establish alert levels based on a patient's lateral thickness of the thorax for various procedural categories during diagnostic or interventional cardiac catheterization. The model uses linear regression of logarithmic reference air kinetic energy released per unit mass (KERMA) and air KERMA area product, also referred to as dose area product, to set alert levels at the top 95% and 99% of patient data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!