Rapid fibrovascularization is a prerequisite for successful biomaterial engraftment. In addition to their well-known roles in fibrinolysis, urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA) or their inhibitor plasminogen activator inhibitor-1 (PAI-1) have recently been implicated as individual mediators in non-fibrinolytic processes, including cell adhesion, migration, and proliferation. Since these events are critical for fibrovascularization of biomaterial, we hypothesized that the components of the plasminogen activation system contribute to biomaterial engraftment. Employing in vivo and ex vivo microscopy techniques, vessel and collagen network formation within porous polyethylene (PPE) implants engrafted into dorsal skinfold chambers were found to be significantly impaired in uPA-, tPA-, or PAI-1-deficient mice. Consequently, the force required for mechanical disintegration of the implants out of the host tissue was significantly lower in the mutant mice than in wild-type controls. Conversely, surface coating with recombinant uPA, tPA, non-catalytic uPA, or PAI-1, but not with non-catalytic tPA, accelerated implant vascularization in wild-type mice. Thus, uPA, tPA, and PAI-1 contribute to the fibrovascularization of PPE implants through common and distinct effects. As clinical perspective, surface coating with recombinant uPA, tPA, or PAI-1 might provide a novel strategy for accelerating the vascularization of this biomaterial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319722 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116883 | PLOS |
Eur J Surg Oncol
December 2024
Vrije Universiteit Brussel (VUB), Molecular Imaging and Therapy Research Group, MITH, Aartselaar 103, 1090, Brussels, Belgium.
Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China.
Background: Tumor-associated macrophages (TAMs), particularly M2-polarized TAMs, are significant contributors to tumor progression, immune evasion, and therapy resistance in gastric cancer (GC). Despite efforts to target TAM recruitment or depletion, clinical efficacy remains limited. Consequently, the identification of targets that specifically inhibit or reprogram M2-polarized TAMs presents a promising therapeutic strategy.
View Article and Find Full Text PDFAnn Acad Med Singap
December 2024
Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore.
Introduction: Pleural infections are a significant cause of mortality. Intrapleural fibrinolytic therapy (IPFT) utilising alteplase and dornase is a treatment option for patients unsuitable for surgery. The optimal dose of alteplase is unknown, and factors affecting treatment success in an Asian population are unclear.
View Article and Find Full Text PDFmSphere
December 2024
Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China.
is a prominent Gram-negative and encapsulated opportunistic pathogen that causes a multitude of infections such as severe respiratory and healthcare-associated infections. Despite the widespread anti-microbial resistance and the high mortality rate, currently, no clinically vaccine is approved for battling . To date, messenger RNA (mRNA) vaccine is one of the most advancing technologies and are extensively investigated for viral infection, while infrequently applied for prevention of bacterial infections.
View Article and Find Full Text PDFStroke
January 2025
Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China (X.C., L.H., Y.L., Yiran Zhang, X.L., S.L., L.Y., Q.D.).
Background: Whether it is effective and safe to extend the time window of intravenous thrombolysis up to 24 hours after the last known well is unknown. We aimed to determine the efficacy and safety of tenecteplase in Chinese patients with acute ischemic stroke due to large/medium vessel occlusion within an extended time window.
Methods: Patients with ischemic stroke presenting 4.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!