Photoacoustic imaging has emerged as a highly promising tool to visualize molecular events with deep tissue penetration. Like most other modalities, however, image contrast under in vivo conditions is far from optimal due to background signals from tissue. Using iron oxide-gold core-shell nanoparticles, we have previously demonstrated the concept of magnetomotive photoacoustic (mmPA) imaging, which is capable of dramatically reducing the influence of background signals and producing high-contrast molecular images. Here, we report two significant advances toward clinical translation of this technology. First, we introduce a new class of compact, uniform, magneto-optically coupled core-shell nanoparticles, prepared through localized copolymerization of polypyrrole (PPy) on an iron oxide nanoparticle surface. The resulting iron oxide-PPy nanoparticles feature high colloidal stability and solve the photoinstability and small-scale synthesis problems previously encountered by the gold coating approach. In parallel, we have developed a new generation of mmPA featuring cyclic magnetic motion and ultrasound speckle tracking (USST), whose imaging capture frame rate is several hundred times faster than the photoacoustic speckle tracking (PAST) method we demonstrated previously. These advances enable robust artifact elimination caused by physiologic motions and demonstrate the application of the mmPA technology for in vivo sensitive tumor imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610822PMC
http://dx.doi.org/10.1021/nn5069258DOI Listing

Publication Analysis

Top Keywords

magnetomotive photoacoustic
8
photoacoustic imaging
8
background signals
8
core-shell nanoparticles
8
speckle tracking
8
imaging
5
magneto-optical nanoparticles
4
nanoparticles cyclic
4
cyclic magnetomotive
4
photoacoustic
4

Similar Publications

Background/objectives: Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise their functionality. Natural rubber latex (NRL) offers a promising coating alternative due to its biocompatibility and stability-enhancing properties.

View Article and Find Full Text PDF

The development of nanomaterials has drawn considerable attention in nanomedicine to advance cancer diagnosis and treatment over the last decades. Gold nanorods (GNRs) and magnetic nanoparticles (MNPs) have been known as commonly used nanostructures in biomedical applications due to their attractive optical properties and superparamagnetic (SP) behaviors, respectively. In this study, we proposed a simple combination of plasmonic and SP properties into hybrid NPs of citrate-coated manganese ferrite (Ci-MnFeO) and cetyltrimethylammonium bromide-coated GNRs (CTAB-GNRs).

View Article and Find Full Text PDF

Superparamagnetic nanoparticles have become an important tool in biomedicine. Their biocompatibility, controllable small size, and magnetic properties allow manipulation with an external magnetic field for a variety of diagnostic and therapeutic applications. Recently, the magnetically-induced motion of superparamagnetic nanoparticles has been investigated as a new source of imaging contrast.

View Article and Find Full Text PDF

Electromagnetic⁻Acoustic Sensing for Biomedical Applications.

Sensors (Basel)

September 2018

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.

This paper reviews the theories and applications of electromagnetic⁻acoustic (EMA) techniques (covering light-induced photoacoustic, microwave-induced thermoacoustic, magnetic-modulated thermoacoustic, and X-ray-induced thermoacoustic) belonging to the more general area of electromagnetic (EM) hybrid techniques. The theories cover excitation of high-power EM field (laser, microwave, magnetic field, and X-ray) and subsequent acoustic wave generation. The applications of EMA methods include structural imaging, blood flowmetry, thermometry, dosimetry for radiation therapy, hemoglobin oxygen saturation (SO₂) sensing, fingerprint imaging and sensing, glucose sensing, pH sensing, etc.

View Article and Find Full Text PDF

Methods for generating nanopores in substrates typically involve one or more wet-etching steps. Here a fundamentally different approach to produce nanopores in sheet substrates under dry, ambient conditions, using nanosecond-pulsed laser irradiation and magnetic gold nanoclusters (MGNCs) as the etching agents is described. Thermoplastic films (50-75 µm thickness) are coated with MGNCs then exposed to laser pulses with a coaxial magnetic field gradient, resulting in high-aspect ratio channels with tapered cross sections as characterized by confocal fluorescence tomography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!