Dendritic cells (DCs) are essential antigen-presenting cells for the initiation of cytotoxic T-cell responses and therefore attractive targets for cancer immunotherapy. We have developed an integration-deficient lentiviral vector termed ID-VP02 that is designed to deliver antigen-encoding nucleic acids selectively to human DCs in vivo. ID-VP02 utilizes a genetically and glycobiologically engineered Sindbis virus glycoprotein to target human DCs through the C-type lectin DC-SIGN (CD209) and also binds to the homologue murine receptor SIGNR1. Specificity of ID-VP02 for antigen-presenting cells in the mouse was confirmed through biodistribution studies showing that following subcutaneous administration, transgene expression was only detectable at the injection site and the draining lymph node. A single immunization with ID-VP02 induced a high level of antigen-specific, polyfunctional effector and memory CD8 T-cell responses that fully protected against vaccinia virus challenge. Upon homologous readministration, ID-VP02 induced a level of high-quality secondary effector and memory cells characterized by stable polyfunctionality and expression of IL-7Rα. Importantly, a single injection of ID-VP02 also induced robust cytotoxic responses against an endogenous rejection antigen of CT26 colon carcinoma cells and conferred both prophylactic and therapeutic antitumor efficacy. ID-VP02 is the first lentiviral vector which combines integration deficiency with DC targeting and is currently being investigated in a phase I trial in cancer patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323576 | PMC |
http://dx.doi.org/10.1097/CJI.0000000000000067 | DOI Listing |
Animals (Basel)
December 2024
Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
Transcription factors play important roles in the growth and development of various tissues in pigs, such as muscle, fat, and bone. A transcription-factor-scale activation library based on the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated endonuclease Cas9 (Cas9) system could facilitate the discovery and functional characterization of the transcription genes involved in a specific gene network. Here, we have designed and constructed a CRISPR activation (CRISPRa) sgRNA library, containing 5056 sgRNAs targeting the promoter region of 1264 transcription factors in pigs.
View Article and Find Full Text PDFTrends Mol Med
January 2025
Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France.
Beta-thalassemia is a severe, hereditary blood disorder characterized by anemia, transfusion dependence, reduced life expectancy, and poor quality of life. Allogeneic transplantation of hematopoietic stem cells (HSCs) is the only curative treatment for transfusion-dependent β-thalassemia, but a lack of compatible donors prevents the use of this approach for most patients. Over the past 20 years, the rise of gene therapy and the development of lentiviral vectors and genome-editing tools has extended curative options to a broader range of patients.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Innovative Genomics Institute, University of California, Berkeley, CA 94720.
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.
View Article and Find Full Text PDFTissue Cell
January 2025
Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:
Malignant pheochromocytomas are infrequent tumors that have a poorer prognosis compared to their benign counterparts. The administration of chemotherapy to patients with pheochromocytoma can result in adverse side effects and a reduced life quality. Alternative and more targeted treatment strategies, such as gene therapy significantly improve the patients' survival rate and life expectancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!