Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To identify new agents for the treatment of multi-drug-resistant Pseudomonas aeruginosa, we focused on siderophore-conjugated monocarbams. This class of monocyclic β-lactams are stable to metallo-β-lactamases and have excellent P. aeruginosa activities due to their ability to exploit the iron uptake machinery of Gram-negative bacteria. Our medicinal chemistry plan focused on identifying a molecule with optimal potency and physical properties and activity for in vivo efficacy. Modifications to the monocarbam linker, siderophore, and oxime portion of the molecules were examined. Through these efforts, a series of pyrrolidinone-based monocarbams with good P. aeruginosa cellular activity (P. aeruginosa MIC90 = 2 μg/mL), free fraction levels (>20% free), and hydrolytic stability (t1/2 ≥ 100 h) were identified. To differentiate the lead compounds and enable prioritization for in vivo studies, we applied a semi-mechanistic pharmacokinetic/pharmacodynamic model to enable prediction of in vivo efficacy from in vitro data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm501506f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!