Understanding allosteric mechanisms is essential for the physical control of molecular switches and downstream cellular responses. However, it is difficult to decode essential allosteric motions in a high-throughput scheme. A general two-pronged approach to performing automatic data reduction of simulation trajectories is presented here. The first step involves coarse-graining and identifying the most dynamic residue-residue contacts. The second step is performing principal component analysis of these contacts and extracting the large-scale collective motions expressed via these residue-residue contacts. We demonstrated the method using a protein complex of nuclear receptors. Using atomistic modeling and simulation, we examined the protein complex and a set of 18 glycine point mutations of residues that constitute the binding pocket of the ligand effector. The important motions that are responsible for the allostery are reported. In contrast to conventional induced-fit and lock-and-key binding mechanisms, a novel "frustrated-fit" binding mechanism of RXR for allosteric control was revealed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001807 | PMC |
http://dx.doi.org/10.1021/bi501152d | DOI Listing |
Protein Sci
January 2025
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA.
G protein Coupled Receptors (GPCRs) are the largest family of cell surface receptors in humans. Somatic mutations in GPCRs are implicated in cancer progression and metastasis, but mechanisms are poorly understood. Emerging evidence implicates perturbation of intra-receptor activation pathway motifs whereby extracellular signals are transmitted intracellularly.
View Article and Find Full Text PDFBlood Adv
December 2024
University of Illinois at Urbana Champaign, Urbana, Illinois, United States.
Formation of the extrinsic complex (EC) on cell surfaces is the event that triggers the coagulation cascade. Tissue factor (TF) and factor VIIa (FVIIa) form the EC together with factor X (FX) on phosphatidylserine-containing membranes, leading to FX activation by TF:FVIIa. This lipid dependence has made experimental characterization of the EC structure challenging.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
The elucidation of protein structure and function plays a pivotal role in understanding biological processes and facilitating drug discovery. With the exponential growth of protein sequence data, machine learning techniques have emerged as powerful tools for predicting protein characteristics from sequences alone. This review provides a comprehensive overview of the importance and application of machine learning in inferring protein structure and function.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Department of Mathematics, Rutgers University, Piscataway, NJ, USA.
This chapter addresses the following fundamental question: Do sequences of protein domains with sandwich architecture have common sequence characteristics even though they belong to different superfamilies and folds? The analysis was carried out in two stages: (1) determination of domain substructures shared by all sandwich proteins and (2) detection of common sequence characteristics within the substructures. Analysis of supersecondary structures in domains of proteins revealed two types of four-strand substructures that are common to sandwich proteins. At least one of these common substructures was found in proteins of 42 sandwich-like folds (per structural classification in the CATH database).
View Article and Find Full Text PDFbioRxiv
September 2024
College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!