Transforming growth factor-β (TGF-β) mediates growth-inhibitory effects on most target cells via activation of the canonical SMAD signaling pathway. This growth-inhibitory activity may be coupled with cellular differentiation. Our studies demonstrate that TGF-β1 inhibits proliferation of primary, non-transformed human lung fibroblasts in association with the induction of myofibroblast differentiation. Differentiated myofibroblasts maintain the capacity to proliferate in response to exogenous mitogenic stimuli and are resistant to serum deprivation-induced apoptosis. These proliferative and anti-apoptotic properties of myofibroblasts are related, in part, to the down-regulation of caveolin-1 (Cav-1) by TGF-β1. Cav-1 down-regulation is mediated by early activation of p38 MAPK and does not require SMAD signaling. In contrast, myofibroblast differentiation is dependent on activation of the SMAD pathway, but not on p38 MAPK. Thus, combinatorial signaling by TGF-β1 of myofibroblast differentiation and down-regulation of Cav-1 by SMAD and p38 MAPK pathways, respectively, confer proliferative and apoptosis-resistant properties to myofibroblasts. Selective targeting of this SMAD-independent, p38-MAPK/Cav-1-dependent pathway is likely to be effective in the treatment of pathological conditions characterized by TGF-β signaling and myofibroblast activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319960PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116995PLOS

Publication Analysis

Top Keywords

myofibroblast differentiation
12
p38 mapk
12
down-regulation caveolin-1
8
smad signaling
8
properties myofibroblasts
8
smad-independent down-regulation
4
caveolin-1 tgf-β
4
tgf-β effects
4
effects proliferation
4
proliferation survival
4

Similar Publications

Low back pain after spine surgery is a major complication due to excessive epidural fibrosis, which compresses the lumbar nerve. Macrophage-myofibroblast transition (MMT) promoted epidural fibrosis in a mouse laminectomy model. Previously, we demonstrated that LincR-PPP2R5C regulated CD4 + T-cell differentiation.

View Article and Find Full Text PDF

Background: Aortic valve stenosis (AVS) is a progressive disease characterized by fibrosis, inflammation, calcification, and stiffening of the aortic valve leaflets, leading to disrupted blood flow. If untreated, AVS can progress to heart failure and death within 2 to 5 years. Uncovering the molecular mechanisms behind AVS is key for developing effective noninvasive therapies.

View Article and Find Full Text PDF

Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation.

View Article and Find Full Text PDF

Inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal neoplasms characterized by spindle-cell morphology with accompanying inflammatory infiltrates. Originally described in 1939, these tumors can arise in various anatomic locations, with the urinary bladder being a rare site of occurrence but the most common within the genitourinary tract. IMTs typically present as polypoid masses or firm submucosal nodules, often with painless hematuria in bladder cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!