Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: This is a laboratory study to investigate the effect of adding brain-derived-neurotrophic factor (BDNF) in a poly (N-isopropylacrylamide-g-poly (ethylene glycol) scaffold and its effect on spinal cord injury in a rat model.
Methods: This is a laboratory investigation of a spinal cord injury in a rat model. A dorsolateral funiculotomy was used to disrupt the dorsolateral funiculus and rubrospinal tract. Animals were then injected with either the scaffold polymer or scaffold polymer with BDNF. Postoperatively, motor functions were assessed with single pellet reach to grasp task, stair case reaching task and cylinder task. Histological study was also performed to look at extent of glial scar and axonal growth.
Results: Animals received BDNF containing polymer had an increased recovery rate of fine motor function of forelimb, as assessed by stair case reaching task and single pellet reach to grasp task compared with control animals that received the polymer only. There is no significant difference in the glial scar formation. BDNF treated animals also had increased axon growth including increase in the number and length of the rubrospinal tract axons.
Conclusion: BDNF delivered via a scaffold polymer results in increased recovery rate in forelimb motor function in an experimental model of spinal cord injury, possibly through a promotion of growth of axons of the rubrospinal tract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310042 | PMC |
http://dx.doi.org/10.4103/2152-7806.149389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!