Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aaa6505 | DOI Listing |
Arch Rehabil Res Clin Transl
December 2024
Research Centre for Nutrition, Lifestyle and Exercise, School of Physiotherapy, Zuyd University of Applied Sciences, Faculty of Health, Heerlen, The Netherlands.
Objective: To provide a broad overview of the current state of research regarding the effects of 7 commonly used motor learning strategies to improve functional tasks within older neurologic and geriatric populations.
Data Sources: PubMed, CINAHL, and Embase were searched.
Study Selection: A systematic mapping review of randomized controlled trials was conducted regarding the effectiveness of 7 motor learning strategies-errorless learning, analogy learning, observational learning, trial-and-error learning, dual-task learning, discovery learning, and movement imagery-within the geriatric and neurologic population.
Acta Neuropathol
January 2025
Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Independencia 1027, Independencia, 8380453, Chile.
The characteristics of spontaneous movements in infants are essential for the early detection of neurological pathologies, with the Prechtl method being a widely recognized approach. While the Prechtl method is effective in predicting motor risks, its reliance on the evaluator's expertise limits its scalability, particularly in low-income areas. In such contexts, the use of inertial sensors combined with automated analysis presents a promising accessible alternative; however, more research is necessary to get results comparable to those of the Precht method.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
Recently, evidence has supported a significant role for immune and oxidative-mediated damage underlying the pathogenesis of different types of retinal diseases, including retinitis pigmentosa (RP). Our study aimed to evaluate the presence of immune cells and mediators in patients with RP using flow cytometric analysis of peripheral blood (PB) and aqueous humor (AH) samples. We recruited 12 patients with RP and nine controls undergoing cataract surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!