Mosaic evolution is a key mechanism that promotes robustness and evolvability in living beings. For the human head, to have a modular organization would imply that each phenotypic module could grow and function semi-independently. Delimiting the boundaries of head modules, and even assessing their existence, is essential to understand human evolution. Here we provide the first study of the human head using anatomical network analysis (AnNA), offering the most complete overview of the modularity of the head to date. Our analysis integrates the many biological dependences that tie hard and soft tissues together, arising as a consequence of development, growth, stresses and loads, and motion. We created an anatomical network model of the human head, where nodes represent anatomical units and links represent their physical articulations. The analysis of the human head network uncovers the presence of 10 musculoskeletal modules, deep-rooted in these biological dependences, of developmental and evolutionary significance. In sum, this study uncovers new anatomical and functional modules of the human head using a novel quantitative method that enables a more comprehensive understanding of the evolutionary anatomy of our lineage, including the evolution of facial expression and facial asymmetry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389032 | PMC |
http://dx.doi.org/10.1038/srep08298 | DOI Listing |
J Patient Rep Outcomes
January 2025
EuroQol Research Foundation, Rotterdam, The Netherlands.
Background: Multiple diseases, such as Adolescent Idiopathic Scoliosis (AIS), present at adolescent age and the impact on quality of life (QoL) prolongs into adulthood. For the EQ-5D, a commonly used instrument to measure QoL, the current guideline is ambiguous whether the youth or adult version is to be preferred at adolescent age. To assess which is most suitable, this study tested for equivalence along predefined criteria of the youth (EQ-5D-5L) and adult (EQ-5D-Y-5L) version in an adolescent population receiving bracing therapy for AIS.
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
ImmGen EvSys Lab, BT-113 Department of Biotechnology, Berhampur University, Bhanja Bihar Berhampur, Berhampur, 760007, Odisha, India.
Background: Migraine is a highly prevalent and incapacitating neurological disorder mostly characterised by recurring attacks of moderate to severe throbbing and pulsating pain on one side of the head. The role of estrogen in migraine has been well documented. Although genetic variations in the ESR1 gene have been associated with an increased risk of developing migraine, the findings are inconsistent.
View Article and Find Full Text PDFJ Glaucoma
January 2025
Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI.
Precis: Current optical coherence tomography normative sample data may not represent diverse human optic nerve anatomy to accurately classify all individuals with true glaucomatous optic neuropathy.
Purpose: To compare optic nerve head (ONH) measurements between published values from an optical coherence tomography (OCT) normative database and a more diverse cohort of healthy individuals.
Patients And Methods: ONH parameters from healthy participants of the Michigan Screening and Intervention for Glaucoma and Eye Health through Telemedicine (MI-SIGHT) program and the Topcon Maestro-1 normative cohort were compared.
JASA Express Lett
January 2025
Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98103, USA.
Pitch perception affects children's ability to perceive speech, appreciate music, and learn in noisy environments, such as their classrooms. Here, we investigated pitch perception for pure tones as well as resolved and unresolved complex tones with a fundamental frequency of 400 Hz in 8- to 11-year-old children and adults. Pitch perception in children was better for resolved relative to unresolved complex tones, consistent with adults.
View Article and Find Full Text PDFThe visual system of teleost fish grows continuously, which is a useful model for studying regeneration of the central nervous system. Glial cells are key for this process, but their contribution is still not well defined. We followed oligodendrocytes in the visual system of adult zebrafish during regeneration of the optic nerve at 6, 24, and 72 hours post-lesion and at 7 and 14 days post-lesion via the sox10:tagRFP transgenic line and confocal microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!