Recombinant human erythropoietin (EPO), a glycohormone, is one of the leading biopharmaceutical products, while carbamylated erythropoietin (CEPO), an EPO derivative, is attracting widespread interest due to its neuroprotective effects without erythropoiesis in several cells and animal models. However, exogenous EPO promotes an angiogenic response from tumor cells and is associated with tumor growth, but knowledge of CEPO on tumor growth is lacking. Here we show that CEPO, but not EPO, inhibited Neuro-2a growth and viability. As expected, CEPO--unlike EPO--did not activate JAK-2 either in primary neurons or in Neuro-2a cells. Interestingly, CEPO did not induce GDNF expression and subsequent AKT activation in Neuro-2a cells. Before CEPO/EPO treatment, glial cell line-derived neurotrophic factor (GDNF) neutralization and GFR receptor blocking decreased the viability of EPO-treated Neuro-2a cells but did not influence CEPO-treated Neuro-2a cells. As compared to primary neurons, the expression of CD131, as a receptor complex binding to CEPO, is almost lacking in Neuro-2a cells. In BABL/C-nu mice, CEPO did not promote the growth of Neuro-2a cells nor extended the survival time compared to mice treated with EPO. The results indicate that CEPO did not promote tumor growth because of lower expression of CD131 and subsequent dysfunction of CD131/GDNF/AKT pathway in Neuro-2a cells, revealing its therapeutic potential in future clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10565-015-9292-y | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.
View Article and Find Full Text PDFFitoterapia
January 2025
Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, INF 364, D-69221 Heidelberg, Germany.
Parkinson's disease (PD) is the second most common neurodegenerative disorder in the elderly, currently with no cure. Its mechanisms are not well understood, however α-synuclein protein aggregation plays a central role in the pathogenesis of PD, leading to neurodegeneration. We demonstrated that in a PD model dietary in Caenorhabditis elegans treatment with an extract from the rhizome of Canna coccinea decreased the accumulation of α-synuclein.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
Maistero-2 is a novel, non-toxic cholesterol-binding protein derived from an edible mushroom Grifola frondosa mRNA. Maistero-2 specifically binds to lipid membranes containing 3-hydroxy sterols with a lower cholesterol concentration threshold than cholesterol-binding domain 4 (D4) of perfringolysin O (PFO) and anthrolysin O (ALO). Maistero-2 binding is particularly sensitive to the size and conformation of the A-, B-, and D-ring of sterols but not very sensitive to modifications of the isooctyl side chain commonly found in phytosterols.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Institute of Plant Science Technology, Mahatma Gandhi University, Kottayam, India; School of Biosciences, Mahatma Gandhi University, Kottayam, India; School of Food Science Technology, Mahatma Gandhi University, Kottayam, India. Electronic address:
Therapeutic application of bacterial cellulose, a polymer produced by fermentative growth of bacteria, is often challenged by low yields and absence of high yielding strains. The current study reports the synthesis and characterization of bacterial cellulose from a novel microbial consortium of Weissela confusa, Neobacillus drentensis, and Bacillus sp. isolated from mother of vinegar and identified by 16S rDNA typing.
View Article and Find Full Text PDFJ Physiol Investig
November 2024
Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan.
Tomatidine, a major tomato glycoalkaloid, is effective for the prevention of skeletal muscle wasting and enhancing mitophagy. However, its effects on transmembrane ionic currents are not well explored. In this study, we explored the interactions between tomatidine and Na+ current.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!