Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The fluorescence quenching N,N-bis(2,6-dimethylphenyl)-3,4:9,10-perylenetetra-carboxylic diimide (BDPD) by colloidal silver nanoparticles (AgNPs) was studied in methanol and ethylene glycol by steady state fluorescence measurements. The Stern-Volmer quenching rate constant (Ksv) was calculated as 8.1 × 10(8) and 8.22 × 10(8) M(-1) in methanol and ethylene glycol respectively. Taking the fluorescence lifetime of BDPD in the absence of silver nanoparticles as 3.2 ns, the values of the fluorescence quenching rate constants (kq = Ksv/τ) are calculated as 2.54 × 10(17) and 2.56 × 10(17) M(-1) s(-1) in methanol and ethylene glycol respectively. From the data, fluorescence resonance energy transfer and / or electron transfer processes play a major role in the fluorescence quenching of BDPD by AgNPs in methanol and low concentrations of Ag NPs in ethylene glycol. The static quenching rate constant in ethylene glycol was calculated by modified Stern-Volmer equation as V = 8.86 × 10(9) M(-1). For dynamic quenching, the radius of quenching sphere volume r values were found to be 68.3 and 70.6 nm in ethanol and ethylene glycol, respectively. For static quenching in ethylene glycol the effective radius of quenching sphere action (kinetic radius) was calculated as r = 152 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-015-1523-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!