Proteoglycans (PGs) are macromolecules that consist of long linear polysaccharides, glycosaminoglycan (GAG) chains, covalently attached to a core protein by the carbohydrate xylose. The biosynthesis of GAG chains is initiated by xylosylation of the core protein followed by galactosylation by the galactosyltransferase β4GalT7. Some β-d-xylosides, such as 2-naphthyl β-d-xylopyranoside, can induce GAG synthesis by serving as acceptor substrates for β4GalT7 and by that also compete with the GAG synthesis on core proteins. Here we present structure-activity relationships for β4GalT7 and xylosides with modifications of the aromatic aglycon, using enzymatic assays, cell studies, and molecular docking simulations. The results show that the aglycons reside on the outside of the active site of the enzyme and that quite bulky aglycons are accepted. By separating the aromatic aglycon from the xylose moiety by linkers, a trend towards increased galactosylation with increased linker length is observed. The galactosylation is influenced by the identity and position of substituents in the aromatic framework, and generally, only xylosides with β-glycosidic linkages function as good substrates for β4GalT7. We also show that the galactosylation ability of a xyloside is increased by replacing the anomeric oxygen with sulfur, but decreased by replacing it with carbon. Finally, we propose that reaction kinetics of galactosylation by β4GalT7 is dependent on subtle differences in orientation of the xylose moiety.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4ob02632bDOI Listing

Publication Analysis

Top Keywords

active site
8
gag chains
8
core protein
8
gag synthesis
8
substrates β4galt7
8
aromatic aglycon
8
xylose moiety
8
β4galt7
6
galactosylation
5
exploration active
4

Similar Publications

Alanine racemase (Alr) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent racemization between L- and D-alanine in bacteria. Owing to the potential interest in targeting Alr for antibacterial drug development, several studies have determined the structures of Alr from different species, proposing models for the reaction mechanism. Insights into its reaction dynamics may be conducive to a better understanding of the Alr reaction mechanism.

View Article and Find Full Text PDF

Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.

View Article and Find Full Text PDF

The structure and active components of the filling material play a critical role in the contamination remediation performance of permeable reactive barriers. However, current methods lack a comprehensive understanding of the structural evolution and long-term performance of these materials during remediation processes. This study utilizes column experiments combined with spectral induced polarization (SIP) monitoring to investigate the effectiveness of zero-valent iron (ZVI), activated carbon (AC), and their composite with sand in removing Cr(VI).

View Article and Find Full Text PDF

NSUN2-Mediated R-loop Stabilization as a Key Driver of Bladder Cancer Progression and Cisplatin Sensitivity.

Cancer Lett

December 2024

Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:

R-loops are critical structures that play pivotal roles in regulating genomic stability and modulating gene expression. This study investigates the interactions between the 5-methylcytosine (mC) methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and R-loops in the transcriptional dynamics and damage repair process of bladder cancer (BCa) cells. We observed markedly elevated levels of R-loops in BCa cells relative to normal urothelial cells.

View Article and Find Full Text PDF

Dual-domain superoxide dismutase: In silico prediction directed combinatorial mutation for enhanced robustness and catalytic efficiency.

Int J Biol Macromol

December 2024

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China. Electronic address:

The robustness and catalytic activity of superoxide dismutase (SOD) are still the main factors limiting their application in industrial fields. This study aims to further improve the properties of a natural thermophilic iron/manganese dual-domain SOD (Fe/Mn-SODA fused with N-terminal polypeptide) from Geobacillus thermodenitrificans NG80-2 (GtSOD) by modifying its each domain using in-depth in silico prediction analysis as well as protein engineering. First, computational analysis of the N-terminal domain and GtSODA domain was respectively performed by using homologous sequence alignment and virtual mutagenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!