The identification of multipotent mammary stem cells (MaSCs) has provided an explanation for the unique regenerative capacity of the mammary gland throughout adult life. However, it remains unclear what genes maintain MaSCs and control their specification into the two epithelial lineages: luminal and basal. LBH is a novel transcription co-factor in the WNT pathway with hitherto unknown physiological function. LBH is expressed during mammary gland development and aberrantly overexpressed in aggressive 'basal' subtype breast cancers. Here, we have explored the in vivo role of LBH in mammopoiesis. We show that in postnatal mammary epithelia, LBH is predominantly expressed in the Lin(-)CD29(high)CD24(+) basal MaSC population. Upon conditional inactivation of LBH, mice exhibit pronounced delays in mammary tissue expansion during puberty and pregnancy, accompanied by increased luminal differentiation at the expense of basal lineage specification. These defects could be traced to a severe reduction in the frequency and self-renewal/differentiation potential of basal MaSCs. Mechanistically, LBH induces expression of key epithelial stem cell transcription factor ΔNp63 to promote a basal MaSC state and repress luminal differentiation genes, mainly that encoding estrogen receptor α (Esr1/ERα). Collectively, these studies identify LBH as an essential regulator of basal MaSC expansion/maintenance, raising important implications for its potential role in breast cancer pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352974 | PMC |
http://dx.doi.org/10.1242/dev.110403 | DOI Listing |
EMBO J
June 2024
Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France.
How cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors.
View Article and Find Full Text PDFNPJ Regen Med
May 2023
Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
Adult stem cell niche is a special environment composed of a variety stromal cells and signals, which cooperatively regulate tissue development and homeostasis. It is of great interest to study the role of immune cells in niche. Here, we show that mammary resident macrophages regulate mammary epithelium cell division and mammary development through TNF-α-Cdk1/Cyclin B1 axis.
View Article and Find Full Text PDFDiabetologia
January 2023
South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
Aims/hypothesis: Using a targeted proteomics approach, we aimed to identify and validate circulating proteins associated with impaired glucose metabolism (IGM) and type 2 diabetes in a Black South African cohort. In addition, we assessed sex-specific associations between the validated proteins and pathophysiological pathways of type 2 diabetes.
Methods: This cross-sectional study included Black South African men (n=380) and women (n=375) who were part of the Middle-Aged Soweto Cohort (MASC).
Sci Adv
October 2021
Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France.
The epithelial-mesenchymal transition (EMT) and primary ciliogenesis induce stem cell properties in basal mammary stem cells (MaSCs) to promote mammogenesis, but the underlying mechanisms remain incompletely understood. Here, we show that EMT transcription factors promote ciliogenesis upon entry into intermediate EMT states by activating ciliogenesis inducers, including FGFR1. The resulting primary cilia promote ubiquitination and inactivation of a transcriptional repressor, GLIS2, which localizes to the ciliary base.
View Article and Find Full Text PDFIUBMB Life
August 2020
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
The mammary gland is a secretory organ, which develops as a network of growing epithelial ducts composed of luminal and basal cells that invade the surrounding adipose tissue through a series of developmental cycles. Mammary stem cells (MaSCs) maintain an accurate tissue homeostasis, and their proliferation and cell fate determination are regulated by multiple hormones and local factors. The WNT pathway plays a critical role in controlling the enormous tissue expansion and remodeling during mammary gland development through the maintenance and differentiation of MaSCs, and its deregulation has been implicated in breast cancer (BC) initiation and progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!