Lactacystin is a selective UPS inhibitor recently used to destroy dopamine (DA) neurons in animal models of Parkinson's disease (PD). However, both in vitro and in vivo studies show discrepancies in terms of the sensitivity of non-DA neurons to its toxicity. Therefore, our study was aimed to examine the toxic effect of intranigral administration of lactacystin on DA and non-DA neurons in the rat substantia nigra (SN), compared to the classic neurotoxin 6-OHDA. Tissue DA levels in the striatum and SN and GABA levels in the SN were also examined. Moreover, behavioral response of nigral GABAA receptors to locally administered muscimol was evaluated in these two PD models. We found that both lactacystin and 6-OHDA induced a strong decrease in DA level in the lesioned striatum and SN but only lactacystin slightly reduced GABA levels in the SN. A stereological analysis showed that both neurotoxins highly decreased the number of DA neurons in the SN, while only lactacystin moderately reduced the number of non-DA ones. Finally, in the lactacystin group, the number of contralateral rotations after intranigrally administrated muscimol was decreased in contrast to the increased response in the 6-OHDA model. Our study proves that, although lactacystin is not a fully selective to DA neurons, these neurons are much more vulnerable to its toxicity. Partial lesion of nigral non-DA neurons in this model may explain the decreased behavioral response to the GABAA agonist muscimol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2015.01.043DOI Listing

Publication Analysis

Top Keywords

behavioral response
12
non-da neurons
12
decreased behavioral
8
gabaa agonist
8
agonist muscimol
8
lactacystin
8
parkinson's disease
8
partial lesion
8
lesion nigral
8
neurons
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!