The present work focuses on the development of biomaterials that support the adhesion and the proliferation of adipose-tissue derived stem cells. Therefore, gelatin and starch are selected as starting materials. Both hydrogel building blocks are of great interest as they provide a general chemical structure comparable to the protein and the polysaccharide constituting part of the extracellular matrix. Crosslinkable side groups are incorporated on both biopolymers to enable the subsequent chemical crosslinking, thereby ensuring their stability at physiological temperature. An in vitro cellular assay revealed that the hydrogels developed are biocompatible and supported cell adhesion of adipose-tissue derived mesenchymal stem cells. The presence of the starch phase tempered the adhesion resulting in local cell detachment. The results thus indicate that by carefully varying the ratio of the two building blocks, hydrogels can be developed possessing a controllable cell adhesion behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-015-5424-4 | DOI Listing |
Elife
January 2025
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).
View Article and Find Full Text PDFJ Cell Sci
January 2025
Department of Biochemistry, University of Illinois at Urbana-Champaign, USA.
This study investigated possible mechanisms underlying differences between heterophilic and homophilic cadherin adhesions that influence intercellular mechanics and multicellular organization. Results suggest that homophilic cadherin ligation selectively activates force-transduction, such that resulting signaling and mechano-transduction amplitudes are independent of cadherin binding affinities. Epithelial (E-) and neural (N-) cadherin cooperate with distinct growth factors to mechanically activate force-transduction cascades.
View Article and Find Full Text PDFFront Parasitol
March 2024
Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.
The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Medical College of Qinghai University, Xining, China.
Background: Chromosome segregation 1 like () overexpression can promote proliferation and migration in cancer. In previous study, we found that CSE1L expression was higher in gastric cancer (GC) tissues compared to normal tissues. However, the biological function and molecular mechanism of CSE1L in GC remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!