Stress selections on domain antibodies: 'what doesn't kill you makes you stronger'.

Protein Eng Des Sel

Biopharm Innovation, RD Biopharm R&D, GlaxoSmithKline Plc., 315 Cambridge Science Park, Cambridge CB4 0WG, UK.

Published: March 2015

In addition to the desired specificity and affinity for their respective therapeutic targets, antibody-based drugs must also demonstrate an ability to be manufactured and formulated at the concentrations needed for therapeutic application and to remain resistant to aggregation during storage to reduce the risk of induced immunogenicity. Improvements to the thermodynamic stability of the folded state of the protein are considered to be critical for decreasing the aggregation propensity of the protein. In this work, we have improved the biophysical properties of a number of human domain antibodies (dAbs) by identifying mutations which decrease the propensity for dAb self-aggregation without compromising the affinity for their respective target antigen. The mutations were identified by subjecting phage-displayed error-prone PCR-generated libraries to a variety of generic environmental conditions (temperature, pH and protease) followed by antigen capture, facilitating selection for improved thermodynamic stability of the protein. The results indicate that sufficient sequence diversity usually exists within the complementarity determining regions of dAbs to allow for mutations that lead to improvements to biophysical properties with full retention of parent lead biochemical and biological properties. Improved biophysical properties were often accompanied by higher apparent melting temperature values, while alternative selection pressures often identified similar features, suggesting generic nature of these mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1093/protein/gzu057DOI Listing

Publication Analysis

Top Keywords

biophysical properties
12
domain antibodies
8
affinity respective
8
thermodynamic stability
8
improved biophysical
8
stress selections
4
selections domain
4
antibodies 'what
4
'what kill
4
kill stronger'
4

Similar Publications

Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization.

View Article and Find Full Text PDF

(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.

View Article and Find Full Text PDF

: Peripheral artery disease (PAD) is a prevalent vascular condition characterized by arterial narrowing, which impairs blood flow and manifests as intermittent claudication, a pain or cramping sensation induced by physical activity or ambulation. Walking distance is a crucial clinical indicator of peripheral artery disease, and it correlates with the disease severity and risk of mortality. It reflects the severity of the disease, with reduced mobility indicating an increased risk of morbidity.

View Article and Find Full Text PDF

The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game.

Molecules

January 2025

Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.

The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells.

View Article and Find Full Text PDF

is a member of the cruciferous family with rich glucosinolate (GSL) content, particularly glucobrassicin (3-indolylmethyl glucosinolate, I3M), that can be metabolized into indole-3-carbinol (I3C), a compound with promising anticancer properties. To unravel the genetic mechanism influencing I3C content in rapeseed seedlings, a comprehensive study was undertaken with a doubled haploid (DH) population. By quantitative trait loci (QTL) mapping, seven QTL that were located on A01, A07, and C04 were identified, with the most significant contribution to phenotypic variation observed on chromosome A07 (11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!