Investigation of the bioactive secondary metabolites of the marine actinomycetes Rubrobacter radiotolerans led to the isolation and characterization of two naturally rare dimeric indole derivatives (1 and 2). The structures of these new compounds were elucidated by spectroscopic data interpretation, and the absolute configurations were assigned by CD calculations. The acetylcholinesterase (AchE) inhibitory activity of compounds 1 and 2 was evaluated, both of which showed moderate activity with IC50 values of 11.8 and 13.5μM, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fitote.2015.01.014 | DOI Listing |
Biochemistry
January 2025
Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
DtpC was isolated from the ditryptophenaline biosynthetic pathway found in filamentous fungi as a cytochrome P450 (P450) that catalyzes the dimerization of diketopiperazines. More recently, several similar P450s were discovered. While a vast majority of such P450s generate asymmetric diketopiperazine dimers, DtpC and other fungal P450s predominantly catalyze the formation of symmetric dimer products.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Technology Kharagpur, Chemistry, Paschim Midnapore, 721302, Kharagpur, INDIA.
All-carbon quaternary and tertiary stereocenters connected at the C2-position of functionalizable C3-alkylated indole nucleus are commonly occurring frameworks found in many indole alkaloids of medicinal importance. Their direct access is scarcely reported, a long-standing problem, and developing a unique yet simple method can pave the pathway to an entirely different retrosynthetic route for the total synthesis of these alkaloids. Herein, this problem is addressed by developing an unprecedented branch-selective allylation strategy employing a broad range of structurally and electronically different 3-alkenyl-indoles and allylboronic acids.
View Article and Find Full Text PDFMagn Reson Chem
January 2025
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia.
The complete H and C NMR assignments of a trimeric vindoline together with its individual components, dimeric vindolicine and monomeric vindoline, are performed based on a thorough analysis of the ROESY, COSY, HSQC, and HMBC spectra in combination with the state-of-the-art quantum-chemical calculations. A spatial structure of vindoline trimer is determined by means of computational conformational analysis in combination with the probability distribution map of its basic conformers. On the example of monoterpene indole alkaloid, the trimer vindoline, the present study reveals the power of modern computational NMR to perform identification and stereochemical studies of large natural compounds with some limitations, which may arise in the quantum chemical computing workflow.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA.
The evolutionary arms race between plants and insects has led to key adaptive innovations that drive diversification. Alkaloids are well-documented anti-herbivory compounds in plant chemical defences, but how these specialized metabolites are allocated to cope with both biotic and abiotic stresses concomitantly is largely unknown. To examine how plants prioritize their metabolic resources responding to herbivory and cold, we integrated dietary toxicity bioassay in insects with co-expression analysis, hierarchical clustering, promoter assay, and protein-protein interaction in plants.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Department of Organic Chemistry University of Madras, Guindy Campus Chennai-600 025 Tamilnadu India.
Two new phenyl-sulfonyl-indole derivatives, namely, -{[3-bromo-1-(phenyl-sulfon-yl)-1-indol-2-yl]meth-yl}--(4-bromo-3-meth-oxy-phen-yl)benzene-sulfonamide, CHBrNOS, (), and ,-bis-{[3-bromo-1-(phenyl-sulfon-yl)-1-indol-2-yl]meth-yl}benzene-sulfonamide, CHBrNOS, (), reveal the impact of intra-molecular π-π inter-actions of the indole moieties as a factor not only governing the conformation of ,-bis-(1-indol-2-yl)meth-yl)amines, but also significantly influencing the crystal patterns. For , the crystal packing is dominated by C-H⋯π and π-π bonding, with a particular significance of mutual indole-indole inter-actions. In the case of , the mol-ecules adopt short intra-molecular π-π inter-actions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!