Herein, novel biodegradable, stimulus-responsive, chemically cross-linked and porous hydrogel has been synthesized to evaluate its applicability as an efficient carrier for sustained release of ornidazole and ciprofloxacin. The cross-linked hydrogel (c-Dxt/pAA) has been developed from dextrin and poly(acrylic acid) using N,N'-methylene bis(acrylamide) cross-linker via Michael-type addition reaction. With the variation of reaction parameters, various c-Dxt/pAA hydrogels have been synthesized to optimize the best one. c-Dxt/pAA hydrogel has been characterized using various physicochemical characterization techniques. The hydrogel demonstrates significant pH and temperature sensitivity. Gel characteristics and gel kinetics have been performed through the measurement of rheological parameters. The hydrogel shows noncytotoxic behavior toward human mesenchymal stem cells. Biodegradation study predicts that c-Dxt/pAA is degradable in nature. The in vitro release of ornidazole and ciprofloxacin suggests that the hydrogel released both the drugs in a controlled manner with extensive stability up to 3 months. The results suggest that c-Dxt/pAA is probably a promising candidate for controlled release of ornidazole and ciprofloxacin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am508712e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!