A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mimic of the green fluorescent protein β-barrel: photophysics and dynamics of confined chromophores defined by a rigid porous scaffold. | LitMetric

Chromophores with a benzylidene imidazolidinone core define the emission profile of commonly used biomarkers such as the green fluorescent protein (GFP) and its analogues. In this communication, artificially engineered porous scaffolds have been shown to mimic the protein β-barrel structure, maintaining green fluorescence response and conformational rigidity of GFP-like chromophores. In particular, we demonstrated that the emission maximum in our artificial scaffolds is similar to those observed in the spectra of the natural GFP-based systems. To correlate the fluorescence response with a structure and perform a comprehensive analysis of the prepared photoluminescent scaffolds, (13)C cross-polarization magic angle spinning solid-state (CP-MAS) NMR spectroscopy, powder and single-crystal X-ray diffraction, and time-resolved fluorescence spectroscopy were employed. Quadrupolar spin-echo solid-state (2)H NMR spectroscopy, in combination with theoretical calculations, was implemented to probe low-frequency vibrational dynamics of the confined chromophores, demonstrating conformational restrictions imposed on the coordinatively trapped chromophores. Because of possible tunability of the introduced scaffolds, these studies could foreshadow utilization of the presented approach toward directing a fluorescence response in artificial GFP mimics, modulating a protein microenvironment, and controlling nonradiative pathways through chromophore dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja5131269DOI Listing

Publication Analysis

Top Keywords

fluorescence response
12
green fluorescent
8
fluorescent protein
8
protein β-barrel
8
dynamics confined
8
confined chromophores
8
nmr spectroscopy
8
chromophores
5
mimic green
4
protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!