Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time. Compared to small scale plant cultivations, HT systems have much higher demands, from a conceptual and a logistic point of view, on experimental design, as well as the actual plant cultivation conditions, and the image analysis and statistical methods for data evaluation. Furthermore, cultivation conditions need to be designed that elicit plant performance characteristics corresponding to those under natural conditions. This manuscript describes critical steps in the optimization of procedures for HT plant phenotyping systems. Starting with the model plant Arabidopsis, HT-compatible methods were tested, and optimized with regard to growth substrate, soil coverage, watering regime, experimental design (considering environmental inhomogeneities) in automated plant cultivation and imaging systems. As revealed by metabolite profiling, plant movement did not affect the plants' physiological status. Based on these results, procedures for maize HT cultivation and monitoring were established. Variation of maize vegetative growth in the HT phenotyping system did match well with that observed in the field. The presented results outline important issues to be considered in the design of HT phenotyping experiments for model and crop plants. It thereby provides guidelines for the setup of HT experimental procedures, which are required for the generation of reliable and reproducible data of phenotypic variation for a broad range of applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299434 | PMC |
http://dx.doi.org/10.3389/fpls.2014.00770 | DOI Listing |
Endocrine
January 2025
Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, Florence, Italy.
Purpose: To compare functional deficits associated to surgery with those caused by the growth of the head and neck paragangliomas (HNPGLs).
Methods: 72 patients with HNPGLs were included. Patients were divided in group A (49 patients undergoing surgery) and group B (23 patients following a wait and see approach).
EJNMMI Phys
January 2025
Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden.
Background: System calibration is essential for accurate SPECT/CT dosimetry. However, count losses due to dead time and pulse pileup may cause calibration errors, in particular for I, where high count rates may be encountered. Calibration at low count rates should also be avoided to minimise detrimental effects from e.
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.
Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.
View Article and Find Full Text PDFBMC Med Educ
January 2025
School of Nursing, Seirei Christopher University, Hamamatsu, Shizuoka, Japan.
Background: Point-of-care ultrasound (POCUS) can be used in a variety of clinical settings and is a safe and powerful tool for ultrasound-trained healthcare providers, such as physicians and nurses; however, the effectiveness of ultrasound education for nursing students remains unclear. This prospective cohort study aimed to examine the sustained educational impact of bladder ultrasound simulation among nursing students.
Methods: To determine whether bladder POCUS simulation exercises sustainably improve the clinical proficiency regarding ultrasound examinations among nursing students, evaluations were conducted before and after the exercise and were compared with those after the 1-month follow-up exercise.
BMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!