Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics.

Proc Natl Acad Sci U S A

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720; and Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Published: February 2015

Mammalian neurotransmitter-gated receptors can be conjugated to photoswitchable tethered ligands (PTLs) to enable photoactivation, or photoantagonism, while preserving normal function at neuronal synapses. "MAG" PTLs for ionotropic and metabotropic glutamate receptors (GluRs) are based on an azobenzene photoswitch that is optimally switched into the liganding state by blue or near-UV light, wavelengths that penetrate poorly into the brain. To facilitate deep-tissue photoactivation with near-infrared light, we measured the efficacy of two-photon (2P) excitation for two MAG molecules using nonlinear spectroscopy. Based on quantitative characterization, we find a recently designed second generation PTL, L-MAG0460, to have a favorable 2P absorbance peak at 850 nm, enabling efficient 2P activation of the GluK2 kainate receptor, LiGluR. We also achieve 2P photoactivation of a metabotropic receptor, LimGluR3, with a new mGluR-specific PTL, D-MAG0460. 2P photoswitching is efficiently achieved using digital holography to shape illumination over single somata of cultured neurons. Simultaneous Ca(2+)-imaging reports on 2P photoswitching in multiple cells with high temporal resolution. The combination of electrophysiology or Ca(2+) imaging with 2P activation by optical wavefront shaping should make second generation PTL-controlled receptors suitable for studies of intact neural circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343171PMC
http://dx.doi.org/10.1073/pnas.1416942112DOI Listing

Publication Analysis

Top Keywords

second generation
8
two-photon brightness
4
brightness azobenzene
4
azobenzene photoswitches
4
photoswitches designed
4
designed glutamate
4
glutamate receptor
4
receptor optogenetics
4
optogenetics mammalian
4
mammalian neurotransmitter-gated
4

Similar Publications

Introduction: Although there are numerous options for epilepsy treatment, its effective control continues unsatisfactory. Thus, search for alternative therapeutic options to improve the efficacy/safety binomial of drugs becomes very attractive to investigate. In this context, intranasal administration of antiseizure drugs formulated on state-of-the-art nanosystems can be a promising strategy.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

PMN-MDSCs are responsible for immune suppression in anti-PD-1 treated TAP1 defective melanoma.

Clin Transl Oncol

January 2025

Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.

Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.

View Article and Find Full Text PDF

Efficacy and safety of KN026 and docetaxel for HER2-positive breast cancer: a phase II clinical trial.

Cancer Commun (Lond)

January 2025

Department of Medical Oncology, Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, P. R. China.

Background: The standard first-line treatment for human epidermal growth factor receptor 2 (HER2)-positive recurrent/metastatic breast cancer currently includes pertuzumab plus trastuzumab and docetaxel. This study aimed to evaluate the effectiveness of KN026, an anti-HER2 bispecific antibody, plus docetaxel in first-line treatment of HER2-positive recurrent/metastatic breast cancer.

Methods: This open-label, single-arm, phase II study enrolled patients with HER2-positive recurrent/metastatic breast cancer in 19 centers across China from December 30, 2019 to May 27, 2021.

View Article and Find Full Text PDF

Engineering Floquet Moiré Patterns for Scalable Photocurrents.

Nano Lett

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina.

While intense laser irradiation and moiré engineering have independently proven powerful for tuning material properties on demand in condensed matter physics, their combination remains unexplored. Here we exploit tilted laser illumination to create spatially modulated light-matter interactions, leading to two striking phenomena in graphene. First, using two lasers tilted along the same axis, we create a quasi-1D supercell hosting a network of Floquet topological states that generate controllable and scalable photocurrents spanning the entire irradiated region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!