Lanthano phosphomolybdate-decorated silica nanoparticles: novel hybrid materials with photochromic properties.

Dalton Trans

REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.

Published: March 2015

Novel photochromic hybrid nanomaterials were prepared through the immobilization of the lacunary Keggin-type phosphomolybdate (TBA4H3[PMo11O39]·xH2O, denoted as PMo11) and sandwich-type lanthano phosphomolybdates (K11[Ln(III)(PMo11O39)2]·xH2O, denoted as Ln(PMo11)2, where Ln(III) = Sm, Eu, Gd, Tb and Dy) onto positively-charged functionalized silica nanoparticles. The functionalized silica nanoparticles were prepared by a one-step co-condensation route between tetraethyl orthosilicate and dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, presenting an average particle size of 95 ± 26 nm, a spherical morphology and a pore diameter of 13.7 nm. All characterization techniques proved the successful immobilization of the phosphomolybdates. The photochromic properties of the resulting hybrid nanomaterials in the solid state were evaluated by UV-Vis spectroscopy and colorimetry. All materials revealed promising photochromic properties under UV irradiation (λ = 254 nm). The lacunary phosphomolybdate anchored onto the silica nanoparticles, C18-SiO2@PMo11, showed the best photoswitching properties, with the color changing from green to dark-blue (ΔE* = 26.8). Among the Ln(PMo11)2-based hybrid nanomaterials, those containing higher Mo loadings--Eu(III)- and Tb(III)-based samples--presented more significant color changes from green to dark-blue (ΔE* = 18.8-18.9). These results revealed that the optical properties of the as-prepared hybrid nanomaterials did not depend directly on the type of Ln(III) cation, but only on the amount of Mo, which was the target element responsible for the photochromic behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5dt00090dDOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
16
hybrid nanomaterials
16
photochromic properties
12
functionalized silica
8
green dark-blue
8
dark-blue Δe*
8
hybrid
5
photochromic
5
properties
5
lanthano phosphomolybdate-decorated
4

Similar Publications

Microfluidics-enabled core/shell nanostructure assembly: Understanding encapsulation processes via particle characterization and molecular dynamics.

Adv Colloid Interface Sci

January 2025

Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Biocity (5th fl.), Tykistökatu 6A, 20520 Turku, Finland. Electronic address:

In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure.

View Article and Find Full Text PDF

Bactericidal Hemostatic Sponge: A Point of Care Solution to Combat Traumatic Injury.

Adv Healthc Mater

January 2025

Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.

Uncontrollable haemorrhage and associated microbial contamination in the battlefield and civilian injuries pose a tremendous threat to healthcare professionals. Such traumatic wounds often necessitate an effective point-of-care solution to prevent the consequent morbidity owing to blood loss or haemorrhage. However, developing superior hemostatic materials with anti-infective properties remains a challenge.

View Article and Find Full Text PDF

Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.

View Article and Find Full Text PDF

NIR-Reflective Black Photonic Films Designed for Effective LiDAR Recognition.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!