Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam.
Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE.
Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10(12) eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations.
Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound imaging. This acoustic range verification approach could offer the possibility of combining anatomical ultrasound and Bragg peak imaging, but further studies are required for translation of these findings to clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.4905047 | DOI Listing |
Clin Transl Radiat Oncol
March 2025
Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands (the).
Background And Purpose: Radiotherapy induces tumor cell killing by generating DNA double strand breaks (DSBs). The effectiveness of radiotherapy is significantly influenced by the repair of DSBs, which counteracts this lethal effect. Current investigations are focused on determining whether non-homologous end joining (NHEJ) or homologous recombination is the predominant repair pathway following proton and photon radiation.
View Article and Find Full Text PDFA wavelength demodulation method for ultra-short fiber Bragg grating (US-FBG) sensors based on an arrayed waveguide grating (AWG) and a convex optimization algorithm is proposed and demonstrated. Instead of measuring the output power ratio of the two adjacent AWG channels as previously done, in this work the wavelength demodulation is realized by reconstructing the US-FBG spectrum. The principle of spectral reconstruction involves using an AWG to sample the spectral information of US-FBG and constructing underdetermined matrix equations with the obtained prior information on transmission responses and the detected output power from multiple AWG channels.
View Article and Find Full Text PDFMed Phys
December 2024
Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Background: A passive dosimeter framework for the measurement of dose in carbon ion beams has yet to be characterized or implemented for regular use.
Purpose: This work determined the dose calculation correction factors for absorbed dose in thermoluminescent dosimeters (TLDs) in a therapeutic carbon ion beam. TLD could be a useful tool for remote audits, particularly in the context of clinical trials as new protocols are developed for carbon ion radiotherapy.
Sensors (Basel)
November 2024
Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
A respiration rate (RR) monitoring system was created by integrating a Fibre Bragg Grating (FBG) optical fibre sensor into a respirator mask. The system exploits the sensitivity of an FBG to temperature to identify an individual's RR by measuring airflow temperature variation near the nostrils and mouth. To monitor the FBG response, a portable, battery-powered, wireless miniature interrogator system was developed to replace a relatively bulky benchtop interrogator used in previous studies.
View Article and Find Full Text PDFRadiother Oncol
December 2024
Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark.
Background And Purpose: In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used toreach an isoeffective biological response between photon and proton doses. However, the RBE varies with biological endpoints and linear energy transfer (LET), two key parameters in radiotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!