The preparation and X-ray and spectroscopic studies of the title copper(II) complex, [Cu(C12H8N3O2)(CN)(H2O)], are reported. The Cu(II) cation is five-coordinated, forming a distorted square-planar pyramid with an Addison τ parameter of 0.14. The UV-vis spectrum shows a d-d transition of the Cu(II) centre at 638 nm, and the electron paramagnetic resonance (EPR) spectrum confirms that the Cu(II) cation has an axial symmetry coordination and that the unpaired electrons occupy the d(x(2)-y(2)) orbital. Cyclic voltammetric studies show two irreversible oxidation and reduction peaks.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053229615001692DOI Listing

Publication Analysis

Top Keywords

copperii complex
8
cuii cation
8
structural spectropscopic
4
spectropscopic studies
4
studies three-dimensional
4
three-dimensional hydrogen-bonded
4
hydrogen-bonded copperii
4
complex aqua[bispyridin-2-ylcarbonylamidato]cyanidocopperii
4
aqua[bispyridin-2-ylcarbonylamidato]cyanidocopperii preparation
4
preparation x-ray
4

Similar Publications

Syntheses, structures and anti-cancer activities of Cu and Zn complexes containing 1,1'-[(3-fluoro-phen-yl)methyl-ene]bis-[3-(3-fluoro-phen-yl)imidazo[1,5-]pyridine].

Acta Crystallogr E Crystallogr Commun

January 2025

Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.

Two novel complexes, [Cu()Cl] and [Zn()Cl], were synthesized from 1,1'-[(3-fluoro-phen-yl)methyl-ene]bis-[3-(3-fluoro-phen-yl)imidazo[1,5-]pyridine] (), and copper(II) and zinc(II) chloride, respectively. The structures of these complexes were confirmed using ESI-MS, IR and H NMR spectra. The results reveal mononuclear structures in which the central metal atoms are coordinated by two N atoms from the imidazole rings and two Cl ligands.

View Article and Find Full Text PDF

Ten coordination compounds, [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)Cl] (C3), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)Cl] (), and [Cu(L)NO] (), containing pyridine derivatives of -methoxyphenyl-thiosemicarbazones were synthesized and characterized. The molecular structure of four compounds was investigated using single crystal X-ray diffraction. Spectral analysis techniques such as FT-IR, H NMR, C NMR, elemental analysis, and molar conductivity were used for all the synthesized compounds.

View Article and Find Full Text PDF

Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.

View Article and Find Full Text PDF

The electrocatalytic aqueous ammonia oxidation (AO) represents a more sustainable alternative to accessing nitrite (NO) and nitrate (NO). We now report that Cu(pyalk) {pyalk = 2-(pyridin-2-yl)propan-2-oate}, previously employed as a homogeneous water oxidation (WO) catalyst, is also active for selective AO in aqueous environments. The traditional Griess analytical test for NO/NO was modified to permit the operation in the presence of the otherwise interfering Cu ion.

View Article and Find Full Text PDF
Article Synopsis
  • Control of individual atomic spins is essential for advancements in spintronics, quantum sensing, and quantum information processing, with scanning tunneling microscopy (STM) being a effective tool for manipulation.
  • The research presents a new method for self-assembling magnetic organometallic complexes using iron atoms and specific molecules (Cu(dbm) and FePc) on a silver substrate, effectively forming complexes that mimic metallocenes.
  • Magnetic properties of these complexes show a notable Kondo effect, which is explained through density functional theory calculations indicating that the interaction between Fe 3d-orbitals and benzene π-orbitals enhances Kondo screening, offering insights for designing hybrid organometallic systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!