The overall study goal was to produce a microparticle formulation containing atropine sulfate for ocular administration with improved efficacy and lower side effects, compared with that of the standard marketed atropine solution. The objective was to prepare an atropine sulfate-loaded bovine serum albumin-chitosan microparticle that would have longer contact time on the eyes as well as better mydriatic and cycloplegic effect using a rabbit model. The microparticle formulation was prepared by method of spray-drying technique. The percent drug loading and encapsulation efficiency were assessed using a USP (I) dissolution apparatus. The particle sizes and zeta potential were determined using laser scattering technique and the surface morphology of the microparticles was determined using a scanning electron microscope. The product yield was calculated from relative amount of material used. In vitro cytotoxicity and uptake by human corneal epithelial cells were examined using AlamarBlue and confocal microscopy. The effects of the microparticle formulation on mydriasis in comparison with the marketed atropine sulfate solution were evaluated in rabbit eyes. The prepared microparticle formulation had ideal physicochemical characteristics for delivery into the eyes. The in vivo studies showed that the microparticles had superior effects on mydriasis in rabbits than the marketed solutions
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.24380 | DOI Listing |
PLoS One
January 2025
Faculty of Pharmacy, Sardar Bahadur Khan Women University Quetta, Quetta, Pakistan.
Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5.
View Article and Find Full Text PDFPharmaceutics
November 2024
Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
This study explores the development and characterization of spray-dried composite microparticles consisting of levofloxacin (LVX, a broad-spectrum antibiotic), and ambroxol (AMB, a mucolytic agent that has antibacterial and antibiofilm properties), for the intended application of the drug against lower respiratory tract infections (LRTIs). A range of LVX to AMB mass ratios (1:1, 1:0.5, and 1:0.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Physical & Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK.
Microgels, combining the properties of hydrogels and microparticles, are emerging as versatile materials for varied applications such as drug delivery and sensing, although the precise control of particle size remains a challenge. Advances in synthetic methodologies have provided new tools for tailoring of properties, however costs and scalability of the processes remains a limitation. We report here the water-based synthesis of a library of -isopropylacrylamide-based microgels covalently crosslinked with varying contents of ,-methylenebisacrylamide.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil; Keizo Asami Institute (iLIKA), Av. Prof. Morais Rego, 1235, University City, 50670-901 Recife, Brazil. Electronic address:
The microencapsulation of Lactocaseibacillus rhamnosus GG in a matrix of sodium alginate, xanthan gum, gum arabic and chitosan hydrochloride is a promising strategy for protecting this probiotic during passage through the gastrointestinal tract. This study evaluated the influence on the viability of Lactocaseibacillus rhamnosus GG encapsulated with these polymers by external ionic gelation with vibratory extrusion and the microcapsules that showed the best results of capsulation efficiency, viability, size and morphology were analyzed by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and exposure to environmental stress conditions and gastrointestinal simulation. The result revealed encapsulation efficiency values above 95 % for all formulations and survival rate higher than 6 log CFU/mL for most analyzed groups.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
Diabetes mellitus (DM) prevalence is rising worldwide. Current therapies comprising subcutaneous insulin injections can cause adverse effects such as lipodystrophy, local reactions like redness and swelling, fluid retention, and allergic reactions. Nanoparticle carriers for oral insulin are groundbreaking compared to existing methods because they are non-invasive treatments, showing operational convenience, controlled release profile, and ability to simulate the physiological delivery route into the bloodstream.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!