Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultrascaled transistors based on single-walled carbon nanotubes are identified as one of the top candidates for future microprocessor chips as they provide significantly better device performance and scaling properties than conventional silicon technologies. From the perspective of the chip performance, the device variability is as important as the device performance for practical applications. This paper presents a systematic investigation on the origins and characteristics of the threshold voltage (VT) variability of scaled quasiballistic nanotube transistors. Analysis of experimental results from variable-temperature measurement as well as gate oxide thickness scaling studies shows that the random variation from fixed charges present on the oxide surface close to nanotubes dominates the VT variability of nanotube transistors. The VT variability of single-tube transistors has a figure of merit that is quantitatively comparable with that of current silicon devices; and it could be reduced with the adoption of improved device passivation schemes, which might be necessary for practical devices incorporating multiple nanotubes, whose area normalized VT variability becomes worse due to the synergic effects from the limited surface coverage of nanotubes and the nonlinearity of the device off-state leakage current, as predicted by the Monte Carlo simulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn506839p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!