Brachypodium distachyon L., a model plant for cereal crops, has become important as an alternative and potential biofuel grass. In plants, N-glycosylation is one of the most common and important protein modifications, playing important roles in signal recognition, increase in protein activity, stability of protein structure, and formation of tissues and organs. In this study, we performed the first glycoproteome analysis in the seedling leaves of B. distachyon. Using lectin affinity chromatography enrichment and mass-spectrometry-based analysis, we identified 47 glycosylation sites representing 46 N-linked glycoproteins. Motif-X analysis showed that two conserved motifs, N-X-T/S (X is any amino acid, except Pro), were significantly enriched. Further functional analysis suggested that some of these identified glycoproteins are involved in signal transduction, protein trafficking, and quality control and the modification and remodeling of cell-wall components such as receptor-like kinases, protein disulfide isomerase, and polygalacturonase. Moreover, transmembrane helices and signal peptide prediction showed that most of these glycoproteins could participate in typical protein secretory pathways in eukaryotes. The results provide a general overview of protein N-glycosylation modifications during the early growth of seedling leaves in B. distachyon and supplement the glycoproteome databases of plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr501080r | DOI Listing |
Int J Mol Sci
December 2024
The Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
The basic helix-loop-helix () transcription factor (TF) family, the second-largest among eukaryotes, is known for its evolutionary and functional diversity across plant species. However, genes have not yet been characterized in . In this study, we identified 76 genes, which exhibit a variety of physicochemical properties.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Grupo MOSS, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Av. Reina Mercedes, 10, Sevilla 4012, Spain.
Protoplasma
December 2024
Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia.
Phosphorus (P) is a macronutrient that plays a crucial role in critical plant functions. Phosphate transporters (PHTs) ensure the acquisition and translocation of Pi in the plant, thereby playing a key role in maintaining normal plant growth under Pi deficiency conditions. In Brachypodium distachyon, the grass model system, the function of individual PHT genes, remains largely unknown.
View Article and Find Full Text PDFPlant J
December 2024
Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, 99164, USA.
Root systems are uniquely adapted to fluctuations in external nutrient availability. In response to suboptimal nitrogen conditions, plants adopt a root foraging strategy that favors a deeper and more branched root architecture, enabling them to explore and acquire soil resources. This response is gradually suppressed as nitrogen conditions improve.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Biology, University of Massachusetts, 611 N. Pleasant St, Amherst, MA, 01002, USA.
Replicated trait evolution can provide insights into the mechanisms underlying the evolution of biodiversity. One example of replicated evolution is the awn, an organ elaboration in grass inflorescences. Awns are likely homologous to leaf blades.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!